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Abstract— The paper presents a pilot study of a vi-
sual motion onset and augmented reality (AR) brain–
computer interface (vmarBCI) paradigm. We also eval-
uate a BCI classification accuracy using a step–wise lin-
ear discriminant analysis method using different event re-
lated potential (ERP) averaging scenarios. We discuss the
novel visual motion in an AR set–up, which generates the
vmarBCI stimuli. The AR set–up is created with a virtual
reality cardboard with a regular smartphone as a display.
Six visual motion patterns are presented to the user dur-
ing the online vmarBCI experiments in an oddball style
paradigm allowing for brainwave “aha–responses” eluci-
dation, within ERPs carrying P300 modulations. A sub-
sequent classification accuracy comparisons are also dis-
cussed in online and offline vmarBCI studies. A research
hypothesis of the classification accuracy non–significant
differences among various numbers of ERP response av-
eraging scenarios is confirmed.

Keywords— brain–computer interface (BCI); augmented

reality (AR); motion onset brain response.

I. INTRODUCTION
A brain–computer interface (BCI) is a modern neurotech-

nology employing the central nervous system (CNS) brain
signals (brainwaves) of a user (paralyzed or able–bodied) to
create a new communication channel with others or to con-
trol external devices without depending on any muscle ac-
tivity [1]. The BCI technology has provided a support al-
ready to patients’ life improvement who suffer from severe
paralysis due to diseases like an amyotrophic lateral scle-
rosis (ALS) [1]. The contemporary BCI applications rely
mostly on a static visual mode (no visual flow dynamics em-
ployed), which generates the most reliable event related po-
tentials (ERP) so far [2]. Also many successful alternative
options have been developed recently to utilize spatial audi-
tory [2, 3], tactile (somatosensory) [4, 5] or mixed [6] modes.
Meanwhile, the visual BCI still offers hard to beat commu-
nication options in comparison with the contemporary tactile
and auditory modes in case of locked–in syndrome (LIS) pa-
tients [7, 8]. We present results of a new study employing
an augmented reality (AR) environment realized with a head-
gear (a so–called “cardboard” set–up) as shown in Figure 1.
We propose to utilize a visual motion onset BCI paradigm [9]
realized in a low cost and simple cardboard AR environment
with stereo vision display as shown in Figure 1c. The visual
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onset motion and augmented reality BCI (vmarBCI) head
mounted display can generate various patterns to be applied
in the AR environment (see Figure 1c), and therefore it could
be adopted simply for those users with a good spatial vision.
The presented approach allows for creation of visually rich
and dynamic oddball paradigms [1, 9]. The goal of this pilot
study, with five users so far, is to compare and test a perfor-
mance (a BCI classification accuracy) of the novel vmarBCI
paradigm in comparison to the state of the art spatial tactile
and auditory modalities in function of various event–related
potential (ERP) averaging scenarios. Namely we take the av-
eraging scenarios into account of ten, five, three, two and sin-
gle ERPs processed. The pilot study results obtained with
five so far healthy users using a stepwise linear discriminant
analysis (SWLDA) classifier [10] and five different averaging
settings are analyzed and discussed in the paper.

From now on the paper is organized as follows. In the next
section we present methods developed in OpenVIBE [11]
EEG experimental system together with Unity3D AR proto-
typing environment in order to capture, process and classify
the brainwave responses in the online proposed vmarBCI ap-
plication. Online and offline EEG analysis results together
with conclusions summarize the paper.

II. METHODS
The visual motion AR stimuli are delivered through a card-

board mobile phone set–up as shown in Figures 1a and 1b.
Each visual motion stimulus pattern is generated in an odd-
ball paradigm [1] style by OpenVIBE [11] scenario as shown
in Figure 2. There are six oscillatory visual movement pattens
delivered in random order in order to elicit P300 brainwave
responses in an oddball style paradigm [1]. The visual motion
events are of 100 ms long with inter–stimulus intervals (ISI)
of 300 ms as summarized in Table 1 with experimental con-
dition details. During the online BCI EEG experiments, the
user wears the AR headgear attached with six moving pat-
terns displayed randomly in the augmented vision environ-
ment programmed by our team in Unity3D as shown for a sin-
gle box in Figure 1c. A smartphone camera is used to display
a real room with augmented graphical stimuli. The vmar-
BCI users respond mentally by confirming/counting only to
the instructed and spatially distributed visual motion patterns
(see Figure 1c) while ignoring the others. The users are re-
quested to spell sequences of six locations (six virtual digits
represented by the boxes in the AR).

The EEG vmarBCI experiments were conducted with eth-
ical permission of Ethical Committee of RIKEN Brain Sci-



(a) The AR cardboard set–up #1 dur-
ing the online BCI experiment with a
first user.

(b) The AR cardboard set–up #2 dur-
ing the online BCI experiment with a
second user.

(c) The AR scene presented to the user within the
cardboard with a room environment captured by a
facing forward smartphone camera.

Figure 1: Users wearing the tested two different AR cardboard set–ups shown in panels (a) and (b) together with EEG caps
during the online vmarBCI experiments.

ence Institute and in accordance with The World Medical
Association Declaration of Helsinki - Ethical Principles for
Medical Research Involving Human Subjects. In the on-
line vmarBCI experiments the EEG signals are captured with
an EEG amplifier g.USBamp by g.tec Medical Instruments,
Austria. Eight EEG electrodes are attached to the head loca-
tions O1, O2, Cz, CPz, CP5, CP6, P3, and P4 as in 10/10
intentional system. A reference electrode is attached to a left
earlobe and a ground electrode on the forehead at FPz posi-
tion respectively. The experimental details are summarized in
Table 1.

The EEG signals are recorded and preprocessed online
by an in–house extended OpenVIBE application [11] with
Python programmed network communication and classifica-
tion units (see Figure 2). The EEG signals are segmented
(“epoched”) as features drawn from ERP intervals of 0 ⇠
800 ms (see Figure 3 with averaged results). The sampling
rate is set to 256 Hz, the high pass filter at 0.1 Hz, and the low
pass filter at 40 Hz, respectively. Each user performs four ses-
sions of selecting the six patterns (a spelling of a sequence of
six digits associated with each visual motion pattern). In on-
line vmarBCI experiments each target is presented ten times
in a random series with remaining non–targets. We perform
also an offline analysis of the collected online EEG datasets
in order to test a possible influence of various ERP averag-
ing scenarios by taking 10,5,3,2 or single responses. The
stepwise linear discriminant analysis (SWLDA) [10] classi-
fier is applied next in Python, with features drawn from the
0 ⇠ 800 ms ERP intervals. A removal is performed of the
least significant input features, having p > 0.15, and with the
final discriminant function restricted to contain a maximum
of 60 features.

III. RESULTS
The results of the SWLDA in different averaging scenar-

ios have been summarized in Table 2. The accuracy results
were dropping with lower ERP averaging settings, yet no sta-
tistically significant differences were observed among the re-
sults as evaluated with pairwise Wilcoxon rank sum tests. The
grand mean averaged ERP responses for rare targets (red) and
non–targets (blue) are depicted in Figure 3. The results al-
lowed to draw a conclusion, based on the offline EEG analysis
of five users, that less averaging steps could be used in order
to boost the BCI interaction speed as suggested in Table 2.

Table 1: Conditions and details of the vmarBCI EEG experi-
ment

Condition Detail
Number of users 5
Visual motion stimulus length 100 ms
Inter-stimulus-interval (ISI) 300 ms
EEG recording system g.USBamp active wet

electrodes
Number of the EEG channels 8
EEG electrode positions O1, O2, Cz, CPz,

CP5, CP6, P3, and P4
Reference electrode Behind the user’s left

earlobe
Ground electrode On the forehead (FPz)
Sampling frequency 256 Hz
Classification method Stepwise LDA (decima-

tion filter by a factor 10)
Number of trials 10
Number of sessions 5 (first session used for

training)

IV. CONCLUSIONS
The aim of this study was to test the ERP responses variability
impact on the vmarBCI classification accuracy results. The
offline results obtained with the SWLDA classifier did not
resulted with significant differences although lower averag-
ing settings caused accuracy drops as summarized in Table 2.
One of the users could score the perfect accuracies with 10
trials averaging. All the obtained BCI accuracy results, with
the limited number of users so far (we continue hiring sub-
jects), were above a theoretical chance level of 16.67%.

The preliminary results from the reported pilot study have
been very promising for future online applications with users
suffering from neurodegenerative diseases as well as for
healthy people allowing for enriching the visual BCI stim-
uli presentation by introducing the spatial dynamic features
in the AR set–up, as well as without significant classification
drops in relation to ERP averaging scenarios.
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