
Convolutional Neural Network Architecture and Input Volume Matrix Design
for ERP Classifications in a Tactile P300–based Brain–Computer Interface

Takumi Kodama1 and Shoji Makino1

Abstract— In the presented study we conduct the off–line
ERP classification using the convolutional neural network (CNN)
classifier for somatosensory ERP intervals acquired in the full–
body tactile P300–based Brain–Computer Interface paradigm
(fbBCI). The main objective of the study is to enhance fbBCI
stimulus pattern classification accuracies by applying the CNN
classifier. A 60 × 60 squared input volume transformed by
one–dimensional somatosensory ERP intervals in each electrode
channel is input to the convolutional architecture for a filter
training. The flattened activation maps are evaluated by a mul-
tilayer perceptron with one–hidden–layer in order to calculate
classification accuracy results. The proposed method reveals
that the CNN classifier model can achieve a non–personal–
training ERP classification with the fbBCI paradigm, scoring
100 % classification accuracy results for all the participated ten
users.

I. INTRODUCTION

The brain–computer interface (BCI) is a human computer–
interaction technique that allows communications only using
brain activities [1]. In the past decade, BCI have been
actively developed to assist the amyotrophic lateral sclerosis
(ALS) patients, who have difficulty expressing their inten-
tions or thoughts due to neuro–motor disabilities, since the
neurotechnology does not require any muscle movements
as inputs. However, BCI has a huge issue for performance
results, such as low stimulus pattern classification accuracies.
Practical BCI users have been awaited the completion of a
high performance BCI paradigm.

To solve the issue, we apply the convolutional neural
network (CNN) for classifying ERP intervals which taken
in a P300–based BCI paradigm to decide the presence or
absence of P300 responses in response to external stimuli.
The CNN has been recognized as one of the most effective
method to resolve the computer vision tasks [2]. The pixel
elements of an input volume are convolved with filters in
several layers, then neural networks (NN) are applied to the
output vectors. In the presented study, we optimize the input
volume design and convolutional architecture of the CNN
classifier aiming to improve a classification performance of
the P300–based BCI paradigm.

The dataset applied in the current study is the full–body
tactile P300–based BCI (fbBCI) paradigm [3]. The P300–
based BCI using the sense of touch (tactile) stimuli has
been recognized as one of the alternative paradigms, as it
allows us to communicate with the locked–in syndrome (LIS)
patients who loses their vision or audition as a late symptom
of the ALS disease. So far, however, the tactile BCIs have
been considered as a low performance paradigm due to a

1Life Science Center of TARA, University of Tsukuba, Tsukuba, Japan

complexity of stimulus pattern discriminations comparing to
visual or auditory BCIs. Though the fbBCI paradigm has
adopted spatial stimulus patterns (longer distance in each
pattern for the better discriminations), the best classification
accuracy in the previous study is 59.83 % using the non–
linear SVM classifier with personal training [4].

Accordingly, the main objective of the presented study
is to improve the fbBCI stimulus pattern classification ac-
curacies using the CNN classifier which optimized for the
somatosensory ERP intervals. Our hypothesis is that the
somatosensory evoked potentials (SEP) especially acquired
in the fbBCI paradigm would utilize the characteristic of
the CNN algorithm because of the strong and contrastive
brainwave responses [2], [3]. Consequently, the validities
of both proposed input volume design and convolutional
architecture of the CNN classifier will be demonstrated with
the improved fbBCI classification accuracy results at the end
of the paper.

II. METHODS

The fbBCI electroencephalogram (EEG) experiment was
carried out with ten BCI naive users. Both five healthy males
and females participated in the experiment with a mean
age of 21.9 years old (SD: 1.45). All the experiments were
conducted in a sound proof room at the Life Science Center
of TARA, University of Tsukuba, Japan.

The fbBCI paradigm was a six-command tactile BCI.
Dayton Audio TT25-16 vibrotactile transducers were placed
on a Japanese–style mattress to create six stimulus patterns,
which were given to the left arm (pattern number #1), right
arm (#2), shoulder (#3), waist (#4), left leg (#5) and
right leg (#6) of the user, respectively [3]. Users took the
experiments having their body lying down on the mattress
and transducers. For easier discriminations of the patterns,
each transducer was deployed with enough distances, which
were wider than the previous tactile BCI paradigms applying
transducers to usual hand [5] or facial area [6].

The stimulus carrier frequencies of the transducers were
set at 40 Hz. The stimulus durations were set to 100 ms,
whereas inter–stimulus–intervals (ISI) were randomly ad-
justed from 400 ms to 430 ms to break continuous pattern
stimulations. The acquisition duration of ERP intervals was
set at 800 ms long after the vibrotactile stimulus onsets. In
the fbBCI experiment, users were asked to concentrate on
one of the stimulus patterns while the random stimulations
in order to evoke a somatosensory P300 response [3]. User’s
EEG signals were captured by a bio–signal amplifier system
g.USBamp from g.tec Medical Engineering GmbH, Austria,

978-1-5090-2809-2/17/$31.00 ©2017 IEEE 3814

where the sampling frequency was set at 512 Hz. Active wet
electrodes were attached to channel Cz, Pz, C3, C4, P3, P4,
CP5 and CP6 following the 10/10 extended international
system, covering the primary somatosensory and parietal
cortices on the scalp.

In the current study, all classifications were conducted in
an off–line environment. The ERP intervals recorded in the
online experiment were signal pre–processed before generat-
ing input volumes for the CNN classifier. The pre–processing
began with a bandpass filtering, the passband of which was
set at 0.1 ∼ 30 Hz range, to limit interference signals of the
vibrotactile transducers. In order to assess an effectiveness of
removing background noises, the non epoch averaging and
simple moving averaging (SMA) settings were applied to the
filtered ERP intervals. SMA was a method to conduct epoch
averagings without reducing the number of ERP intervals.
The ERP interval length ERPlen in each electrode channel
was 410, as calculated by ERPlen = dERPdur · fse, where
ERPdur stood for the duration length of the ERP interval
(800 ms) in seconds (0.8 s in this study), fs for the sampling
frequency (512 Hz) and d·e denoted integer ceiling function.

After the signal pre–processing, the ERP intervals gener-
ated in each electrode channel were transformed into squared
matrices to create input volumes for CNN classifier. The
input volume consisted of the squared matrices of both eight
electrode channels and mean value of all electrodes. The
method of generating the input volume was described below:

1) The initial 10 elements of each ERP interval were
eliminated to create squared (n × n) matrices. Namely,
ERPlen was converted from 410 to 400 length.

2) Every 20 elements of each ERP interval were deployed
in vertical direction. For instance, the first 20 elements
(1∼20) were deployed on the first column, then the
subsequent 20 elements (21∼40) were on the second
column. Consequently, the 400 elements of each ERP
interval were transformed into squared 20 rows × 20
columns matrices.

3) Finally each 20 × 20 matrix was concatenated in a 3
× 3 grid pattern to create 60 rows × 60 columns input
volumes. The order of the matrices was Cz, Pz, P3, P4,
mean of all electrodes, C3, C4, CP5, CP6 from the top
left.

The reason why the ERP elements were deployed in verti-
cal direction to generate an squared matrix was that the filter
in the convolution layer could be trained as responding to
the vertical and gradient edge patterns [7]. The processes to
convert ERP intervals into input volumes were also described
in Figure 1.

The concatenated 60 × 60 input volumes were employed
for filter trainings in the convolutional architecture of the
CNN classifier. The default number of input volumes which
generated in an experiment was 60 for targets and 300
for non–targets, though, the non–target input volumes were
randomly selected as many as the number of target input
volumes (60) to keep a class equivalence. Since the fbBCI
conducted six EEG experiments for each ten participated
user, 60 × 6 × 10 = 3600 target and 3600 non–target input

Fig. 1. The generating process of the input volume for the CNN classifier
from the signal pre–processed somatosensory ERP intervals in the current
study. The each element of the ERP intervals denoted the electrical potential
(µV), the value range of which was shown in the heat map. The sample
heat maps in the presented figure signified the mean ERP intervals of target
stimulus, so the P300 responses were confirmed around elements number
200 (white colored area), namely around 300 ∼ 400 ms (200/fs ' 0.39 s).
The numbers in boxes described in beside of the heat maps were associated
with the elements number. (1) Original length of the ERP interval (ERPlen)
was 410, but the first 10 elements were removed to create n × n squared
matrices. (2) The 400 ERP elements were deployed in 20 × 20. Every 20
elements were placed in vertical direction from top left as shown in the
boxes. (3) The 20 × 20 matrices generated in eight electrode channel and
mean of all the electrodes were concatenated in a 3 × 3 grid pattern for
creating 60 × 60 input volume.

volumes were collected altogether. In order to achieve a
non–personal–training ERP classification, the CNN classifier
carried out a cross validation between the participated users.
For instance, user No.1’s input volumes (360 targets vs. 360
non–targets) were evaluated by the classifier model which
trained by leftover user No.2 ∼ No.10’s input volumes
(360 × 9 = 3240 targets vs. 3240 non–targets altogether).
Accordingly, using the CNN classifier, the fbBCI stimulus
pattern classification accuracies could be calculated without
any user–specific classifier models.

The convolutional architecture of the CNN classifier which
comprised of both two convolution and two pooling layers
to classify input volumes was implemented based on LeNet
[7]. MXNet [8] was employed as a calculation library. All the
input volumes, filters and activation maps were limited to two
dimensional in each layer. The original size of input volumes
(Ix, Iy) was settled on (60, 60). The amount of zero padding

3815

Fig. 2. The overview of the convolutional architecture employed in the fbBCI paradigm. The first convolution layer C1 generated 20 activation maps
(Ax1, Ay1) = (56, 56) from the input volume matrices (Ix, Iy) = (60, 60). The consequent pooling layer P1 conducted a max pooling to the previous
activation maps, creating new 20 activation maps (Ax2, Ay2) = (28, 28). At the second convolution layer C2, 50 activation maps (Ax3, Ay3) = (24, 24)
were created in the same way as the first convolution layer. After that those activation maps were input to the second pooling layer P2, generating new
50 activation maps (Ax4, Ay4) = (12, 12). Finally, the activation maps generated in the last layer of the convolutional process were flattened into one–
dimensional vectors x (L = 7200) to classify with the one–hidden–layer multilayer perceptron. The flattened vectors x were conducted two calculations
(H(x), O(x)) in both input and hidden layers by transforming 7200 units into two units at the output layer.

was disabled in every layer. The convolutional architecture
which optimized for the fbBCI paradigm was described as
follows:

1) First convolution layer C1: The first convolution was
conducted in the convolution layer C1. The number
of filters was set at 20, the filter size (Fx1, Fy1) was
(5, 5) and the stride (Sx1, Sy1) was (1, 1). The size of
activation maps (Ax1, Ay1) was (56, 56) as calculated
by An = (In−Fn)/Sn +1. The number of generated
activation maps N1 was the same as the number of
filters (20).

2) First pooling layer P1: The first max pooling was
conducted in the pooling layer P1. The kernel size
of max pooling filter (Kx1,Ky1) was set at (2, 2)
as well as the stride (Sx2, Sy2) at (2, 2). The size of
output activation maps as a result of the max pooling
could be calculated by A′n = dAn/Kne in case of the
kernel size equals to the stride size (Kn = Sn). In the
pooling layer the number of activation maps were kept
intact from the previous convolution layer (N1 = N2).
Consequently, the size of activation maps (Ax2, Ay2)
was (28, 28), the number of which was N2 = 20.

3) Second convolution layer C2: In the second convolu-
tion layer, the number of filters were increased from 20
to 50. Since both size of filter (Fx2, Fy2) and size of
stride (Sx3, Sy3) were same as the first convolution
layer C1, activation maps (Ax3, Ay3) were (24, 24)
as calculated by the same equation. The number of
generated activation maps N3 was raised to 50.

4) Second pooling layer P2: The function of the second
pooling layer was the same as the first pooling layer

P1. The number of activation maps N4 was 50. Both
(Kx2,Ky2) and (Sx4, Sy4) were adjusted to (2, 2). As
P2 was the final layer of the convolutional process, the
activation maps (Ax4, Ay4) = (12, 12) were flattened
into the one–dimensional vector x. The length of the
flatten vector was calculated by Ax4 × Ay4 × N4 =
12× 12× 50 = 7200.

5) Multilayer perceptron: After the convolutional pro-
cess was finished, the flattened vector x was input to
the multilayer perceptron with one–hidden–layer. At
the input layer, 7200 units were allocated to input the
flattened vector x (L = 7200). Then 500 hidden units
were deployed for the intermediate hidden layer. The
output vector of the hidden layer H(x) was obtained
as

H(x) = tanh
(
b(1) +W (1)x

)
, (1)

where b(1) denoted offset vectors and W (1) repre-
sented weight matrices between the input and hid-
den layer. The activation function tanh(x) = (ex −
e−x)/(ex + e−x) was employed for H(x) [2]. Finally
two units were employed for the output layer, as
the fbBCI paradigm adopted two–class classification
(Target or Non–Target). The final output vector of the
multilayer perceptron (O(x)) was calculated by

O(x) = softmax(b(2) +W (2)H(x)), (2)

where both offset vectors b(2) and weight matrices
W (2) stood for the valuables between the hidden layer
and output layer [2]. H(x) signified the output vector
of the previous layer by Eqn.(1).

3816

TABLE I
FBBCI PARTICIPATED USERS AND CLASSIFICATION ACCURACY RESULTS

User No. Gender Age non–averaging SMA
1 F 23 97.22 % 100 %
2 M 23 30.0 % 100 %
3 F 22 72.22 % 100 %
4 M 23 86.11 % 100 %
5 F 20 94.44 % 100 %
6 M 22 88.89 % 100 %
7 M 24 86.11 % 100 %
8 F 20 100 % 100 %
9 M 22 100 % 100 %
10 F 20 41.67 % 100 %

Average. - 21.6 79.66 % 100 %

TABLE II
CONFUSION MATRIX OF CNN CLASS PROBABILITY RESULTS WITH NON

EPOCH AVERAGING

Predicted condition
Non–Target Target

True condition Non–Target 13.5424 % 86.4576 %
Target 2.5989 % 97.4011 %

The details of the CNN architecture and multilayer per-
ceptron employed in the fbBCI paradigm was summarized
in Figure 2.

III. RESULTS

The fbBCI stimulus pattern classification accuracy results
using the CNN classifier were acquired by selecting the
highest target class probabilities among the six vibrotactile
pattern candidates. The accuracy results of two signal pre–
processing settings for generating input volumes, which were
non epoch averaging and simple moving averaging (SMA),
were summarized in Table I. As shown in the table, the
mean classification accuracy of all participated users resulted
in 79.66 % with non–averaging and 100 % with SMA,
respectively.

The mean class probabilities for both class (Target or
Non–Target) and marginal errors of fbBCI ten participated
users were described as a confusion matrix with non epoch
averaging in Table II and SMA in Table III, respectively. The
probability results with non epoch averaging shown in Ta-
ble II revealed that input volumes of the non-target stimulus
pattern often misclassified as the target pattern (around 86
% of them) under the two–class classification. On the other
hand, the probability results using SMA accurately classified
both classes (almost 100 %) as shown in Table III. The results
indicated that the background noises of somatosensory ERP
intervals significantly affected the performance of the CNN
classifier.

IV. DISCUSSIONS AND CONCLUSIONS

In the presented study the novel analysis of the CNN
classifier application for a tactile P300-based BCI paradigm
was conducted. The CNN architecture dedicated to clas-
sify proposed input volumes which transformed by the
somatosensory ERP intervals was developed. Overall, the
CNN classifier scored 79.66 % stimulus pattern classification

TABLE III
CONFUSION MATRIX OF CNN CLASS PROBABILITY RESULTS WITH

SIMPLE MOVING AVERAGING

Predicted condition
Non–Target Target

True condition Non–Target 99.8756 % 0.1243 %
Target 0.0565% 99.9435 %

accuracy with non epoch averaging and 100 % with SMA as
the mean of all the participated users without creating user–
specific classifier models. The first objective of the study
was achieved by the dramatically improved classification
accuracies as the previous result was 59.83 % with personal
training.

In the future study, to implement the proposed methods for
the online experimental environment would be the primary
task, as these ERP classifications were conducted under the
off–line environments in the current study. ALS patients have
expected the development of a high performance and user–
friendly BCI paradigm in practical environments.

In conclusion, we could confirm effectivenesses of our
methodology with high performance classification accuracy
results without personal trainings. We expect that these
findings will contribute to the development of P300–based
BCI paradigms and also improve the life quality of ALS
patients.

REFERENCES

[1] J. Wolpaw and E. W. Wolpaw, Eds., Brain-Computer Interfaces: Prin-
ciples and Practice. Oxford University Press, 2012.

[2] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[3] T. Kodama, S. Makino, and T. M. Rutkowski, “Tactile brain-computer
interface using classification of p300 responses evoked by full body
spatial vibrotactile stimuli,” in Asia-Pacific Signal and Information
Processing Association, 2016 Annual Summit and Conference (APSIPA
ASC 2016), APSIPA. IEEE Press, December 2016, p. Article ID:176.

[4] T. Kodama, K. Shimizu, S. Makino, and T. M. Rutkowski, “Full–body
tactile p300–based brain– computer interface accuracy refinement,” in
Proceedings of the International Conference on Bio-engineering for
Smart Technologies (BioSMART 2016), bioSMART. IEEE Press,
December 2016, pp. 20–23.

[5] K. Shimizu, S. Makino, and T. M. Rutkowski, “Inter–stimulus interval
study for the tactile point–pressure brain–computer interface,” in
2015 37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), IEEE Engineering in
Medicine and Biology Society. IEEE Press, August 25–29, 2015, pp.
1910–1913. [Online]. Available: http://arxiv.org/abs/1506.04458

[6] H. Mori, Y. Matsumoto, Z. R. Struzik, K. Mori, S. Makino,
D. Mandic, and T. M. Rutkowski, “Multi-command tactile
and auditory brain computer interface based on head position
stimulation,” in Proceedings of the Fifth International Brain-Computer
Interface Meeting 2013. Asilomar Conference Center, Pacific
Grove, CA USA: Graz University of Technology Publishing House,
Austria, June 3-7, 2013, p. Article ID: 095. [Online]. Available:
http://castor.tugraz.at/doku/BCIMeeting2013/095.pdf

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[8] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

3817

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Program in Chronological Order

