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Abstract— In this study we report results of a classifica-
tion accuracy performance comparison for a novel full–
body tactile P300–based brain–computer interface (BCI)
paradigm. In the discussed BCI experiments six spatial
vibrotactile stimulus patterns are given to the user body
entire back and limbs. The acquired somatosensory ERP
signals are classified for the BCI purposes using a step–
wise linear discriminant analysis (SWLDA), linear and
non–linear (Gaussian kernel) support vector machines
with features drown from an electroencephalogram (EEG)
preprocessed signals. The aim of the current project is to
determine the most suitable classification methods for a
tactile P300–based BCI paradigm and to affirm a validity
of vibrotactile stimulus patterns for the user full–body–
based interfacing paradigm. The best grand mean av-
eraged accuracies for each classification method result in
rates of 57.48% for SWLDA, 58.5% for linear and 59.83%
for non–linear SVMs, respectively.
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I. INTRODUCTION
A brain–computer interface (BCI) is a neurotechnology

that enables users to express their intention by only using their
brainwaves [1]. For this reason, in the past decade, several
BCI modalities have been eagerly developed in order to com-
municate with amyotrophic lateral sclerosis (ALS) patients,
who have difficulty moving their muscles due to neuro–motor
disabilities [2]. A P300 response–based oddball paradigm,
which employs of user mental attention modulation, is one
of the major modality in the BCI study [1, 3]. The studies
of P300 response–based visual and auditory BCI paradigms
have been widely investigated [4, 5].

In this study, we examine a novel P300 response–based
BCI paradigm using a touch sensation, in other words, a tac-
tile BCI [6]. The tactile BCI could be applicable to locked–in
syndrome (LIS) patients who lose their sight and hearing as
a late symptom of the ALS disease [7]. Therefore, an estab-
lishment of this alternative paradigm shall provide not only a
better communication method for care takers, but also a pa-
tient quality of life. Recent tactile BCI studies have reported
practical feasibility of a tactile stimulus for creating an alter-
native P300–based BCI paradigm [8].

So far, however, there has been little discussion about clas-
sification accuracies of the tactile P300–based BCI. Gener-
ally, the tactile BCI paradigms have not been considered as
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Figure 1: The fbBCI user lying down on a mattress in which
the vibrotactile transducers (shown in the left lower panel)
were embedded. Six vibrotactile stimulus patterns were given
to the user full–body throughout the fbBCI experiment. The
picture is included with the photographed user permission.

high classification accuracy generating solutions comparing
to the competitive visual or auditory BCI paradigms. Hence,
the more investigation is necessary to acquire superior classi-
fication results for a wider usage of tactile P300–based BCI
paradigms.

The main objective in the presented study is to investigate
the most suitable classification method for a tactile P300–
based BCI paradigm in terms of stimulus pattern classifica-
tion accuracies. We propose a novel P300–based full–body
tactile BCI paradigm (fbBCI) as already tested in a previous
pilot study [9]. The fbBCI applied spatial vibrotactile stim-
ulus patterns to the user’s entire back and limbs in order to
evoke the somatosensory P300 responses. The vibrotactile
transducers were placed with larger distances on a mattress
in order to give tactile stimulus patterns to the user. The fb-
BCI was designed for a practical application for bedridden
patients so the user could test it with their body lying down
on the mattress. The previously reported [9] mean tactile BCI
accuracy was of 53.67%. In the current study we aim at im-
provement of that result.

In the current study, a step–wise linear discriminant analy-
sis (SWLDA), linear and non–linear (Gaussian kernel) SVM
algorithms are tested on the acquired EEG data in the fb-
BCI paradigm. The EEG signal preprocessing steps include
bandpass filtering, signal decimation and averaging. We test
several combinations of the above mentioned signal prepro-
cessing steps in order to asses BCI classification methods.
Consequently, a potential validity of the proposed full–body
tactile P300–based BCI paradigm modality is finally recon-
firmed and discussed in the paper.



Table 1: Conditions of the EEG experiments

Condition Detail
Number of users 10 (5 males and 5 females)
Users mean age 21.9 years old
EEG recording system g.USBamp active electrodes

EEG system
EEG electrode positions Cz, Pz, P3, P4, C3, C4, CP5,

and CP6
EEG sampling rate 512 Hz
Stimulus generators Dayton Audio TT25-16 trans-

ducers
Stimulus frequency 40 Hz
EEG acquisition environment BCI2000
Target stimulus length 100 ms
Inter–stimulus interval (ISI) 400 ⇠ 430 ms
ERP interval 0 ⇠ 800 ms after stimulus on-

sets

II. METHODS

The fbBCI EEG experiment was conducted with ten BCI
naive users (five males and females) with a mean age of 21.9
years old (standard deviation of 1.45 years). All the exper-
iments were executed in the Life Science Center of TARA,
University of Tsukuba, Japan with guidelines and permission
of the institutional ethical committee, as well as in accordance
with The World Medical Association Declaration of Helsinki
- Ethical Principles for Medical Research Involving Human
Subjects. All the participating users were paid for their con-
tribution and provided written informed consents.

During the experiment, a user laid down on a Japanese–
style mattress containing a polyester filling. The user was
instructed to distinguish six fbBCI stimulus patterns deliv-
ered to arms, shoulder, waist and legs, as depicted in Fig-
ure 1. The stimulus patterns were created by eight vibro-
tactile transducers (Dayton Audio TT25–16 as depicted in a
lower left panel of Figure 1). The stimulus carrier frequencies
of the transducers were set at 40 Hz. A bio–signal amplifier
system g.USBamp from g.tec Medical Engineering GmbH,
Austria, was employed to record the EEG signals. Following
the 10/10 extended international system, active g.LADYbird
electrodes were attached to Cz, Pz, P3, P4, C3, C4, CP5 and
CP6 to head locations to cover the primary somatosensory
and parietal cortices. A reference electrode was attached to
the left earlobe, and a ground electrode to the head FPz po-
sition. The EEG recording sampling frequency was set at
512 Hz. The amplifier high– and low–pass filters were set at
0.1 Hz and 60 Hz, respectively. A notch filter was set in a
rejection band of 48 to 52 Hz in order to remove power line
interferences. The EEG signals were captured by BCI2000
acquisition software. Details of the fbBCI EEG experimental
protocol are summarized in Table 1.

In each fbBCI single experimental session 10 targets and
50 non–targets stimulus patterns were randomly presented to
the users. The sessions were repeated until each of the six
stimulus pattern became targets, namely 60 targets and 300
non–targets were presented overall in a single experimental
trial. Each user participated in five trials in a row and the
stimulus pattern classification accuracies were calculated by
averaging all of the five trials. The vibrotactile stimulus du-
ration was set to 100 ms and the inter–stimulus–interval (ISI)

was randomly varied from 400 ms to 430 ms to break rhyth-
mic patterns presentation. In the presented study, the ERP
intervals, for a subsequent classifications, were used in laten-
cies covering 0 ⇠ 800 ms after the stimulus onsets.

After the EEG experiment, the acquired ERP intervals
were post–processed offline using MATLAB software. In
this study, the EEG signal processing was divided into three
steps. At first, the preprocessing began with a bandpass filter-
ing. The filter passband was set at 0.1 ⇠ 30 Hz range to limit
interference noise signals from vibrotactile transducers oper-
ating at 40 Hz frequency. Secondly, the filtered ERP intervals
were decimated by 4 ( fs = 128 Hz), 16 ( fs = 32 Hz) and kept
intact at the original sampling frequency of fs = 512 Hz in or-
der to test such feature size reduction process on BCI classifi-
cation accuracy results. Finally, the decimated ERP intervals
were averaged using 5, 10 and single ERPs to further evaluate
the proposed BCI paradigm from a classification speed angle
(the less averaged ERPs the faster the classification). The fi-
nal results of the decimation factors and averaging numbers
relations to the BCI classification accuracies have been sum-
marized in the following results section.

Before a classifier training, preprocessed ERP intervals
were converted into feature vectors. Single feature vector
was comprised of all concatenated electrode channel ERP in-
tervals. Namely, a feature vector length was calculated as
Vlength = dERPinterval · fs/nde ·nc, where ERPinterval stood for
the duration length of ERP interval in seconds (0.8 s in this
study), fs for the sampling frequency (512 Hz in this study),
nd for the signal decimation factor (selected one from 1, 4 or
16), nc for number of electrode channels (8 in this study), and
d·e denoted integer ceiling function. For example, a feature
vector length was Vlength = 824 when the decimation factor
was set to nd = 4.

The concatenated feature vectors were used for the clas-
sifier training. The default numbers of feature vectors were
varied from 6 to 60 for targets and 30 to 300 non–targets de-
pends on the number of averaging steps used. The input non–
target feature vectors were randomly chosen as many as the
number of target feature vectors for the class equivalences.
For example, 60 target and non–target feature vectors were
applied to train the classifier in case of non averaging setting.
The same feature selection settings were applied in the clas-
sification phase for both the vector length (Vlength) and input
feature vector numbers (varying from 1 to 10 for targets and
5 to 50 for non–targets in a single session).

In the presented study, we adopt three machine learning
methods (SWLDA, linear SVM and non–linear Gaussian ker-
nel SVM) to calculate the stimulus pattern classification accu-
racies. The most suitable classification methods for the tactile
P300–based BCI paradigm was assessed by comparing the re-
sulting accuracies. The SWLDA method has been known so
far as the most efficient technique for the P300 response clas-
sification [10, 11]. The SWLDA was developed as a regres-
sion model of the Fisher’s linear discriminant analysis (LDA)
by repetitive addition and reduction of features based on re-
sulting statistical tests. The SVM methods have been com-
monly used not only for brainwave classification [10] but also
in many general machine learning studies. The SVMs have
been achieving their high discriminant performances based
on maximization intraclass margins. Moreover, SVM clas-



Figure 2: Grand mean averaged ERP results of all ten users in the fbBCI EEG experiment for target (purple lines) and non–
target (blue lines) stimulus patterns. The vertical axis of each ERP result shows the electrical potentials, whereas the horizontal
the time series after the stimulus onsets. The red covered area represents the vibrotactile stimulus duration (0 ⇠ 100 ms), where
electrical interferences could be spotted in form of EEG oscilations.

sification could be supported with several kernel functions
K(u,v0) depending on the machine learning problems. In this
study, we tested a linear (linear SVM) K(u,v0) = uTv0 and
a Gaussian (non–linear SVM) K(u,v0) = exp(�gku� v0k2)
kernels, where u and v were input vectors and g = 1/Vlength
for the P300 response classification. The parameter cost for
the Gaussian kernel was fixed to c = 1.

III. RESULTS
The fbBCI EEG experiment results have been summarized in
Figure 2, as grand mean averaged ERP responses of all ten
participated users. The above figure presents the ERP inter-
vals after stimulus onsets from 0 to 800 ms for all electrode
channels, with clear somatosensory P300 responses. The
most encouraging findings were that the electrical potentials
for the target stimulus patterns reached 4 µV or higher poten-
tials for every electrode and their intervals were longer than
400 ms. These characteristics further assisted the superior
classification of the proposed vibrotactile stimulus patterns.

The vibrotactile stimulus pattern classification accuracy re-
sults using the SWLDA, linear and non–linear SVM classi-
fiers of the fbBCI EEG experiment have been reported in Fig-
ure 3 as accuracy comparisons with the decimation factors of
4,16 or non decimation. Also the following averaging sce-

narios were tested using 5,10 or non averaging steps in EEG
signal preprocessing settings. Each bar in Figure 3 represents
grand mean averaged pattern classification accuracy over five
experimental trials for all ten participating users. The best
BCI accuracies for each classification method with the fol-
lowing achived rates of 57.48% for SWLDA, 58.5% for linear
and 59.83% for non–linear SVMs, respectively. The best sig-
nal preprocessing settings were those using decimation factor
4 and no ERP averaging settings for the both SWLDA and
non–linear SVM, whereas the decimation factor of 16 and
number of ERP averaging of 10 for linear SVM. It has been
noteworthy that all of the classification accuracies exceeded
a chance level rate of 16.7% in the six–command based BCI
experiments.

IV. DISCUSSION AND CONCLUSIONS

The purpose of the presented study was to determine the
most suitable classification method for a tactile P300–based
BCI paradigm. Besides, from the improved classification
accuracy results, the potential validity of the proposed full–
body tactile stimulation–based modality was also confirmed.

The most encouraging finding in this study was the best
classification accuracy result using the non–linear SVM
(59.83%) exceeding the mean accuracy result of our previ-



Figure 3: Comparison of the fbBCI grand mean averaged
pattern classification accuracies using SWLDA (top), linear
SVM (middle) and non–linear SVM (bottom). The vertical
axis shows a percentage of the fbBCI classification accura-
cies. The horizontal axis represents number of signal averag-
ing and each bar shows the signal decimation factor.

ous study using the SWLDA method (53.67%) [9]. Likewise,
the both current study best results using SWLDA (57.48%)
and using linear SVM (58.5%) exceeded the previously pub-
lished rate with the similar signal preprocessing settings. The
reported in this paper findings have suggested that the non–
linear SVM have been so far a more effective classifica-
tion method for the tactile P300–based BCI paradigm. They
also indicated a possibility that the proposed full–body tactile
stimulation–based modality shall be applicable for LIS pa-
tients who have difficulty using vision or audition sensations
due to their disabilities.

The presented study, however, was only conducted on the
full–body tactile BCI modality with ten healthy users till
now. Therefore, more analyses would be required, for exam-
ple, more detailed comparison with another results of tactile
P300–based BCI studies, or evaluation with disabled users.
Overall, the results have reconfirmed that the P300 response–
based full–body tactile BCI paradigm shall be a practical
method. We expect that in the near future this neurotechnol-
ogy application will contribute to improve a quality of life for
those suffering from ALS and LIS disease patients in need.

REFERENCES
[1] J. Wolpaw and E. W. Wolpaw, Eds., Brain-Computer

Interfaces: Principles and Practice. Oxford University
Press, 2012.

[2] L. P. Rowland and N. A. Shneider, “Amyotrophic lateral
sclerosis,” New England Journal of Medicine, vol. 344,
no. 22, pp. 1688–1700, 2001.

[3] E. Donchin and M. G. Coles, “Is the P300 component
a manifestation of context updating,” Behavioral and
brain sciences, vol. 11, no. 3, pp. 357–427, 1988.

[4] G. Pires, M. Castelo-Branco, and U. Nunes, “Visual
p300-based bci to steer a wheelchair: a bayesian ap-
proach,” in 2008 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology Soci-
ety. IEEE, 2008, pp. 658–661.

[5] M. Chang, N. Nishikawa, Z. R. Struzik, K. Mori,
S. Makino, D. Mandic, and T. M. Rutkowski,
“Comparison of P300 responses in auditory, visual
and audiovisual spatial speller BCI paradigms,” in
Proceedings of the Fifth International Brain-Computer
Interface Meeting 2013. Asilomar Conference Center,
Pacific Grove, CA USA: Graz University of Technology
Publishing House, Austria, June 3-7, 2013, p. Article
ID: 156. [Online]. Available: http://castor.tugraz.at/
doku/BCIMeeting2013/156.pdf

[6] A.-M. Brouwer and J. B. Van Erp, “A tactile p300 brain-
computer interface,” Frontiers in neuroscience, vol. 4,
p. 19, 2010.

[7] J. R. Patterson and M. Grabois, “Locked-in syndrome:
a review of 139 cases.” Stroke, vol. 17, no. 4, pp. 758–
764, 1986.

[8] T. Kodama, S. Makino, and T. M. Rutkowski,
“Spatial tactile brain-computer interface paradigm
applying vibration stimuli to large areas of user’s
back,” in Proceedings of the 6th International Brain-
Computer Interface Conference 2014, G. Mueller-Putz,
G. Bauernfeind, C. Brunner, D. Steyrl, S. Wriessnegger,
and R. Scherer, Eds. Graz University of Technology
Publishing House, 2014, pp. Article ID 032–1–
4. [Online]. Available: http://castor.tugraz.at/doku/
BCIMeeting2014/bci2014_032.pdf

[9] T. Kodama, K. Shimizu, and T. M. Rutkowski, “Full
body spatial tactile bci for direct brain-robot control,” in
Proceedings of the Sixth International Brain-Computer
Interface Meeting: BCI Past, Present, and Future.
Asilomar Conference Center, Pacific Grove, CA USA:
Graz University of Technology Publishing House, Aus-
tria, 2016, p. 68.

[10] D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bay-
oudh, D. J. McFarland, T. M. Vaughan, and J. R. Wol-
paw, “A comparison of classification techniques for the
P300 speller,” Journal of neural engineering, vol. 3,
no. 4, p. 299, 2006.

[11] N. V. Manyakov, N. Chumerin, A. Combaz, and
M. M. Van Hulle, “Comparison of classification meth-
ods for p300 brain-computer interface on disabled sub-
jects,” Computational intelligence and neuroscience,
vol. 2011, p. 2, 2011.


