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Abstract—In this study we propose a novel stimulus–driven
brain–computer interface (BCI) paradigm, which generates con-
trol commands based on classification of somatosensory modality
P300 responses. Six spatial vibrotactile stimulus patterns are
applied to entire back and limbs of a user. The aim of the
current project is to validate an effectiveness of the vibrotactile
stimulus patterns for BCI purposes and to establish a novel
concept of tactile modality communication link, which shall help
locked–in syndrome (LIS) patients, who lose their sight and
hearing due to sensory disabilities. We define this approach
as a full–body BCI (fbBCI) and we conduct psychophysical
stimulus evaluation and realtime EEG response classification
experiments with ten healthy body–able users. The grand mean
averaged psychophysical stimulus pattern recognition accuracy
have resulted at 98.18%, whereas the realtime EEG accuracy at
53.67%. An information–transfer–rate (ITR) scores of all the
tested users have ranged from 0.042 to 4.154 bit/minute.

I. INTRODUCTION

Past decades have seen the rapid development of a brain–
computer interface (BCI) neurotechnology. The BCI is a hu-
man computer–interaction technique, which enables people to
express their thoughts through any computer devices without
their muscle movements [1], [2]. Achievements of this inter-
face contribute to a life improvement of amyotrophic lateral
sclerosis (ALS) patients, who have difficulty to communicate
since they cannot move their muscles due to neuro–motor dis-
abilities. This symptom restricts interaction with care–takers
and their environments. Thus, the BCI technology shall create
an alternative communication tool for the patients, because it
does not require the users to move their muscles [3]–[5].

One major approach in the BCI research field is the P300–
based oddball paradigm [2]. This approach makes use of a
mental attention modulation resulting in brainwave variabili-
ties. An event related potential (ERP), generated in response
to an attended rare event within the oddball experimental
design, is characterized by a positive EEG deflection usually
in latencies of about 300 − 600 ms and it could be finally
classified [6] for the BCI command generation purposes [5],
[7].

So far, a large number of studies describing P300–based BCI
have been published [8] and majority of them have focused
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Fig. 1. The experimental apparatus and conditions. Panel (a) presents the
fbBCI user lying down on a Japanese–style mattress with embedded vibrotac-
tile transducers. The user have been instructed to distinguish six vibrotactile
stimulus patterns given to his entire back and limbs throughout the fbBCI
experiment. The photograph was included with the user permission. Panel (b)
depicts eight vibrotactile transducers placed on the mattress to create six fbBCI
stimulus patterns, which are #1 left arm; #2 right arm; #3 shoulder; #4
waist; #5 left leg; and #6 right leg, respectively. A longer distance among
the transducers is used comparing to usual hand or facial area applications.
Panel (c) presents a vibrotactile transducer Dayton Audio TT25-16 employed
in the current study to generate vibration stimuli within the fbBCI paradigm.
Panel (d) shows an in–house developed amplifier as a part of the fbBCI
experimental system. The amplifier delivers electric signals to the transducers
using a battery–based power supply for the user safety.

on visual and auditory stimuli [9] in order to evoke the above
mentioned P300 responses. However, the locked–in syndrome
(LIS) patients who lose their sight and hearing as a result of a
progression of the ALS symptoms, for example, might be not



TABLE I
EEG EXPERIMENT CONDITIONS

Condition Detail

Number of users 10 (5 males and 5 females)

Users mean age 21.9 years old

EEG recording system g.USBamp with active electrodes

EEG electrode positions Cz, Pz, P3, P4, C3, C4, CP5, and CP6

EEG sampling rate 512 Hz

Stimulus exciters Dayton Audio TT25-16 transducers

Vibrotactile frequency 40 Hz

EEG acquisition environment BCI2000 [20], [21]

Target stimulus length 100 ms

Inter–stimulus interval (ISI) 400 ∼ 430 ms

Classifier algorithm Stepwise Linear Discriminant Analysis

Classifier inputs 0 ∼ 800 ms interval (3276 features)

able to utilize such typical BCI modalities [5], [10], [11]. In
such cases, the BCI using the remaining three senses, which
are the touch, taste and smell, shall be alternative modalities
for those patients. Within the three alternatives, the BCI using
touch sensation, in other words the tactile modality, have been
identified and already implemented in several pilot studies [5],
[12]–[19]. The tactile BCI research findings in the past decade
have confirmed that a touch (somatosensory or tactile) stimulus
would be an alternative comparing to the remaining sensory
modalities [12]. More recent studies also have confirmed the
validity of the P300–based BCIs [5], [13]–[19] by applying
somatosensory stimuli to various areas of a human body.

It should be noted, however, that most of the studies have
only been carried out in the limited areas of the human
body, such as hands, fingers or around a head [15]–[17].
An application–based problem arrises in case of some totally
locked–in (TLS) patients who may be not able to utilize
such types of BCI modalities due to impaired afferent neural
fibers in those specific areas of their bodies. Furthermore, in
order to help the users more easily distinguish those tactile
stimuli, it shall be more practical to place the vibrotactile
transducers in spatially distant locations, which means, with a
larger distances apart from each other [18], [19].

Accordingly, we present a study of the novel P300–based
tactile BCI, in which spatial vibrotactile stimulus patterns are
applied to the user entire back and limbs in order to evoke
the somatosensory P300 responses. We define this modality
as the full body tactile BCI (fbBCI). In the fbBCI, large
vibrotactile transducers are employed to apply tactile stimuli
to the users. The transducers are placed with larger distances
within a mattress. Users in our study participate in experiments
with their body lying down on the mattress since the fbBCI
is developed for patients who are in bedridden conditions.
During the experiment, in the classification algorithm of fbBCI
paradigm the somatosensory P300 responses are detected and
translated into interfacing commands.

From now on the paper is organized as follows. In the
next section methods used and developed within the presented

Fig. 2. A confusion matrix depicts the grand mean averaged behavioral
response accuracies for each stimulus pattern of all the ten users in the fbBCI
psychophysical experiment. The vertical axis represents the instructed target
stimulus patterns and the horizontal user response numbers. The maximum
correct rate was of 100.0% for stimulus patterns #1 (left arm) and #2 (right
arm), whereas the minimum was of 96.94% for the pattern #5 (left leg). The
grand mean averaged result of all the stimulus patterns was of 98.18%.

project are discussed. Presentation of obtained results, their
discussion, together with conclusions, summarize this paper.

II. METHODS

In the presented project, psychophysical and realtime elec-
troencephalogram (EEG) BCI experiments were carried out
with ten naive users (BCI–beginners). Healthy five males and
five females participated in the fbBCI experiments with a mean
age of 21.9±1.45 years. All the users were paid for their con-
tributions. The informed consents were provided by all users
in the experiments and they agreed to participate by signing
experimental user agreement forms. All the experiments were
conducted in a soundproof room at the Life Science Center
of TARA, University of Tsukuba, Japan. Likewise, they were
conducted in accordance with The World Medical Association
Declaration of Helsinki - Ethical Principles for Medical Re-
search Involving Human Users. The procedures for all the ex-
periments of the fbBCI paradigm were approved and designed
in an agreement with the guidelines of the Ethical Committee
of the Faculty of Engineering, Information and Systems at
the University of Tsukuba, Tsukuba, Japan. The participating
users were asked to lay down in a silent environment on
a Japanese–style mattress containing a polyester filling as
presented in Figure 1(a). Eight vibrotactile transducers Dayton
Audio TT25-16, as depicted in Figure 1(c), were placed on the
mattress to create six fbBCI stimulus patterns transmitted to
arms, shoulder, waist and legs, as shown in Figure 1(b). Two



Fig. 3. Distribution plots illustrate the grand mean averaged response times
of behavioral button–presses to each stimulus pattern of all the ten users
in the fbBCI psychophysical experiment. The vertical axis shows the fbBCI
stimulus pattern numbers (#1 ∼ #6), whereas horizontal the response times
after the stimulus onsets. The red lines in each plot indicate a lower quartile,
a median and an upper quartile, respectively. From the Wilcoxon rank sum
test evaluation, there were no statistically significant differences among all
median value pairs (p < 0.05) except for the pair of stimulus patterns #3
and #4.

transducers were applied to the shoulder and waist, and only
single one to each arm and leg. The stimulus frequency of
the transducers was set to 40 Hz. Arduino UNO [22] micro–
controller board was used to generate the electric signals
transmitted to the transducers. In addition a battery powered
electronic amplifier, shown in Figure 1(d), was employed to
increase electric currents required by the tactile transducers
Dayton Audio TT25-16.

A. The psychophysical experiment protocol

The main objective of the psychophysical experiment was to
investigate recognition accuracies and response times to each
stimulus patterns delivered from the vibrotactile transducers
attached to the mattress [23]. A MAX (Cycling ’74, USA)
visual programming environment was employed to control
the experimental procedure and to present instructions to the

Fig. 4. A summary diagram of the fbBCI realtime EEG experiment signal
acquisition and processing stages. The EEG brain signals were captured from
eight EEG electrodes attached on a user scalp (positions Cz, Pz, P3, P4, C3,
C4, CP5 and CP6). Next, the captured EEG signals were processed to reduce
noise by a bandpass filtering and a decimation. After that, every the processed
EEG signals were concatenated to create feature vectors. Finally, the generated
feature vectors were classified by the SWLDA method. We used an in–house
modified BCI2000 software [20], [21].

users. The software during the experiments also transmitted
experimental triggers to the Arduino micro–controller board
via a serial connection.

During the psychophysical experiments, the behavioral re-
sponses were collected by pressing a keyboard button as
soon as the user recognized a target stimulus pattern. Each
single session was comprised of 10 targets and 50 non–targets
stimulus patterns presented randomly. Within a single trial, the
session was repeated until all the six stimulus patterns became
the rare targets (as required by the oddball paradigm), namely
60 targets and 300 non–targets were delivered altogether. Only
a single experimental trial was conducted for each user. A
single stimulus duration was set to 100 ms and an inter–
stimulus–interval (ISI) to 400 ms, respectively.

B. The fbBCI realtime EEG experiment protocol

A reason to conduct the fbBCI realtime EEG experiment
was to evaluate the full–body vibrotactile stimulus pattern
feasibility. Likewise, this experiment was performed to reveal
the stimulus pattern classification accuracy from EEG. In the
fbBCI realtime experiment, the EEG signals were captured
with a bio–signal amplifier system g.USBamp (g.tec Medical



Fig. 5. Grand mean averaged ERP results of all the ten users in the fbBCI realtime EEG experiment for target (purple lines) and non-target (blue lines)
stimulus patterns with the locations of the eight EEG electrodes (Cz, Pz, P3, P4, C3, C4, CP5 and CP6). The vertical axis of each ERP result graph represents
the electrical potentials and the horizontal the time after stimulus onsets. Somatosensory P300 responses were clearly confirmed for every electrode in the
200 ∼ 600 ms latency ranges.

Fig. 6. Grand mean area under the ROC curve (AUC) scores of all the ten users in the fbBCI realtime EEG experiment. Both the top topographic maps show
head plots of the target stimulus pattern and non–target AUC scores for eight electrode positions. The top left panel depicts a maximum AUC score for each
electrode position for a latency at 414 ms and the right panel a minimum AUC score at a latency of 932 ms. The bottom panel represents the detailed time
series of the target stimulus pattern versus non-target AUC scores after the stimulus onsets.

Instruments, Austria). Following a 10/10 international system,
eight active EEG electrodes were placed at Cz, Pz, P3, P4, C3,
C4, CP5 and CP6 head locations in order to cover a primary
somatosensory cortex on the scalp [24] as shown in Figure 4.
A reference electrode was attached to the left mastoid, and

a ground electrode to the forehead at the FPz position. The
EEG recording sampling frequency was set to 512 Hz. The
high– and low–pass filters were set at 0.1 Hz and 60 Hz,
respectively. A notch filter to remove power line interference
was set in a rejection band of 48 to 52 Hz. Details of the EEG



Fig. 7. Results of vibrotactile stimulus pattern classification accuracies using the SWLDA classifier algorithm during the fbBCI realtime EEG experiments.
Score of all ten participating users are depicted in form of violin plots. The vertical axis represents a percentage of the fbBCI classification accuracies. The
horizontal axis represents user numbers s1, s2, . . . , s10 and an average of all. Each violin plot contains median, both quartiles, as well as a probability density
from five trial conducted by each user. A yellow stars inside each violin plot indicates the best classification accuracy obtained throughout five trials. A blue
reference line depicts a chance level of 16.7%. The grand mean classification accuracy resulted in 53.67%.

experimental protocol are summarized in Table I.

The EEG signals were captured and classified by an in–
house extended BCI2000 EEG acquisition and ERP classifi-
cation software [20], [21] using a stepwise linear discriminant
analysis (SWLDA) classifier [25]. The procedure to evaluate
whether the somatosensory P300 responses were observed or
not in an user’s EEG signals was described in Figure 4.

The BCI2000 software was also employed to give exper-
imental instructions for users on a computer display. Unlike
in the previous psychophysical experiment, the main role of
the MAX environment was to receive trigger onsets generated
by BCI2000 software via a UDP protocol. Those triggers
were converted to signals in a function box of the MAX
environment and sent to the Arduino micro–controller board
via serial connection alike in the psychophysical experiment.

The experimental flow of the single trial was comprised
of the same steps as in the psychophysical experiment. Each
user participated in five fbBCI trials and the vibrotactile EEG
respnese classification accuracies were calculated by taking
the average of all the five trials. In each trial, the stimulus
duration was set to 100 ms and the ISI to random values in a
range of 400 ms to 430 ms in order to break rhythmic patterns
presentation.

III. RESULTS AND DISCUSSION

The results of the both psychophysical and realtime EEG
experiments have been reported in the following sections.
Overall, the experimental results have been very encouraging
and proven an effectiveness of the proposed P300 response–
based tactile BCI paradigm.

A. The fbBCI psychophysical experimental results

The psychophysical experiment results have been summa-
rized in Figures 2 and 3, as a confusion matrix and a user
behavioral response time distribution plots, respectively. In
Figure 2 the behavioral response accuracies to the instructed
target stimulus patterns and marginal errors are depicted
together. The grand mean averaged response accuracy was
of 98.18%, indicating that the fbBCI vibrotactile stimulus
patterns were suitable for the subsequent BCI experiments.
The most encouraging finding was that all users obtained
discrimination scores for stimulus pattern number #1 and
#2, namely the stimulus patterns for the left and right arms,
without any mistakes.

The behavioral response times collected from the users
have been summarized in Figure 3. The medians of each the
response time for stimulus pattern were settled in the range of
360 ms to 410 ms. The statistical significances among the



Stimulus pattern 1 (Left arm)

fbBCI online experiment ERP response heat maps of each stimulus pattern averaged over 10 users

Stimulus pattern 2 (Right arm)

Stimulus pattern 3 (Shoulder)

Stimulus pattern 4 (Waist)

Stimulus pattern 5 (Left leg)

Stimulus pattern 6 (Right leg)

Fig. 8. ERP response result heatmaps for each fbBCI stimulus pattern averaged over all the realtime experiments of ten users. Vertical axis represent EEG
electrodes, whereas the horizontal represents the elapsed time after stimulus onsets. The P300 response peaks are gradually shifted toward later latencies for
stimulus patterns from #1 (left arm) to #6 (right leg). The differing P300 latencies shall reflect the varying neural pathway processing times (arms versus
legs, etc.).

median difference pairs were only found between stimulus
pattern number #3 and #4, as result of the Wilcoxon rank
sum tests.

B. The fbBCI realtime EEG experimental results

The grand mean averaged ERP EEG responses of all the
ten users participating in the realtime fbBCI experiments
have been depicted in Figure 5. In each electrode position,
somatosensory P300 responses were confirmed in latency
ranges from 200 ms to 600 ms after the target stimulus
patterns presented. It is noteworthy that the potentials of P300
responses reached around 5 µV and their durations were up
to approximately 400 ms long. These characteristics were
often observed in somatosensory P300 responses [18] and
they enhanced classification accuracy in terms of a better
discrimination of the feature vectors.

In Figure 6, an area under the curve (AUC) of an receiver
operating characteristic (ROC) results of all the EEG experi-
ments have been plotted showing contrasts among responses
to targets and non–targets (rare events) stimulus patterns. The
topographic maps in the top panel of Figure 6 illustrated both

the maximum and minimum AUC scores for each electrode
position and their latencies from the stimulus onset. The
latency with the grand mean average maximum AUC score
was at 414 ms.

Vibrotactile stimulus pattern classification accuracies using
the step–wise linear discriminant analysis (SWLDA) classifier
algorithm results of the realtime EEG experiment have been
summarized in Figure 7. The horizontal violin plots depicted
each user stimulus pattern classification accuracy averaged
over five trials using the SWLDA classifier. The accuracy
results were in a range of 23.33% to 93.33%, which rate was
calculated over 30 sessions. The yellow stars inside of the
violin plots marked the best classification accuracies for each
user. The best accuracies of users were in a range of 33.3% to
100.0%. A grand mean average rate was of 53.67%, as well
as the mean best rate of 71.67%, for each user. The resulting
classification accuracies exceeded a theoretical chance level
rate of 16.7% in the six–command based BCI experiments.

The differences of averaged ERP response peaks for each
stimulus pattern within the fbBCI realtime experiments have



Fig. 9. ITR score results of each participant of the fbBCI realtime EEG experiment are summarized in a form of a bar–graph. The vertical axis represents the
ITR scores in bit/minute. The horizontal axis represents user numbers. The average ITR score of all users was of 1.3 bit/minute.

been illustrated in Figure 8. All the ERP response peaks were
confirmed around 400 ms after the stimulus onsets with no
significant EEG amplitude differences. Although, there were
significant differences observed between stimulus pattern #3
(shoulder) and #4 (waist) in the psychophysical experiments
(see Figure 3). This fact further supported the choice of
the vibrotactile stimulus modality for user full–body BCI
experiment set-up. Another finding from heatmaps in Figure 8
was that the P300 response peaks of the upper body (#1 left
arm, #2 right arm and #3 shoulder) were slightly faster than
the lower body (#4 waist, #5 left leg and #6 right leg).
This phenomena might be directly related to the difference of
the reaction and perception speed to the vibrotactile stimulus
patterns.

The bars in Figure 9 have depicted each user information–
transfer–rate (ITR, see equations (1) and (2) for details) score,
which evaluated a communication speed possible to realized
with the tested BCI paradigm [26]. The ITR score results
were obtained as in the following equation,

ITR = V ·R, (1)

where V represented a stimulus pattern classification speed
in selection/minute and R was a number of bits per selection

obtained as,

R = log2N + P · log2P + (2)

+ (1− P ) · log2(
1− P

N − 1
),

with N being the number of classes (six in this study), and
P the stimulus pattern classification accuracy. Each user’s
ITR score result ranged from 0.042 to 4.154 bit/minute. The
resulting mean ITR score of all the participated users was of
1.31 bit/minute.

IV. CONCLUSIONS

This project was undertaken to verify the effectiveness of
the proposed vibrotactile stimulus patterns given to user entire
back and limbs for BCI–based interaction purposes. The main
goal of the reported project was to design the novel P300 EEG
response–based tactile BCI paradigm.

Both, the fbBCI psychophysical and the realtime EEG
experiment results confirmed our hypothesis that the proposed
full–body tactile stimulation–based modality could be applied
for bedridden patients (for example those suffering from
locked–inn syndrome, etc.) who could not utilize visual or
auditory based interfaces. However, at the current stage of
the reported project, the BCI experiments have been con-
ducted only with healthy (body–able) users. The mean BCI



digit spelling classification accuracy was of 53.67% in the
proposed realtime EEG experiments. This accuracy exceeded
our previous related study result of 43.34% [19] by applying
six vibrotactile stimulus patterns to the user’s shoulder and
waist. An improvement of the classification accuracy shall be
expected from more user–centered tactile equipment design,
as well as from more user–friendly experimental paradigm
design. The currently presented results have been not yet fully
satisfactory, as compared to the competitive visual or auditory
BCI paradigms. The obtained outcomes shall be considered as
good. Hence, the current project would obviously require more
improvements and modifications in terms of experimental
parameters such as inter–stimulus–interval; longer stimulus
durations; or introduction of more flexible classification algo-
rithms (e.g. deep learning, transfer learning, or unsupervised
methods), which till now have not been investigated for tactile
BCIs.

Overall, the results from the presented full–body tactile
BCI study were encouraging. We demonstrated that the P300
response–based full–body tactile BCI paradigm has proven to
be a viable concept. We are confident that future developments
in this field will help improve a quality of life of those
patients in need who cannot rely on vision– or audition–based
modalities.
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