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Abstract—A novel approach to steady-state visual evoked
potential (SSVEP) based brain-computer interface (BCI) is pre-
sented in the paper. To minimize possible side–effects of the
monochromatic light SSVEP-based BCI we propose to utilize
chromatic green–blue flicker stimuli in higher, comparing to
the traditionally used, frequencies. The developed safer SSVEP
responses are processed an classified with features drawn from
EEG power spectra. Results obtained from healthy users support
the research hypothesis of the chromatic and higher frequency
SSVEP. The feasibility of proposed method is evaluated in
a comparison of monochromatic versus chromatic SSVEP re-
sponses. We also present preliminary results with empirical
mode decomposition (EMD) adaptive filtering which resulted
with improved classification accuracies.

I. INTRODUCTION

A brain computer interface (BCI) is a technology that
utilizes human neurophysiological signals for the direct brain
communication with an external environment, without depend-
ing on any muscle activity [1]. Particularly, in the case of
patients suffering from locked-in-syndrome (LIS) [2], such
technology could help them to communicate or complete
various daily tasks (type messages on a virtual keyboard or
control their environment using a computer, etc). This should
create a very good option for amyotrophic lateral sclerosis
(ALS) or coma patients to communicate with their families,
friends or caretakers by using only their brainwaves.

In this paper, we report a novel BCI paradigm using
the chromatic steady–state visual evoked potential (SSVEP)
applied also in higher frequencies comparing to the classical
monochromatic approaches [1]. SSVEP is a natural responses
for visual stimulations with specific frequencies. When the
retina is stimulated by a visual stimulator with one frequency,
the brain generates response with same spectrum following
response. This response can be used for detecting which
stimulator the user is gazing at. SSVEP-based BCI is one of
the type of stimulus–driven BCI which is more user friendly
than imagery driven BCI in terms of training. Because the
stimulus driven BCI requires that user train hard and long
time to evoke specific brainwave pattern to control external
devices, it could be burden to disabled patients. However, the
stimulus driven BCI does not require such training because
the brain response to the external stimulus is much stronger
than that of imagery driven BCI.

While SSVEP have been known from many years al-
ready [1], steady–state responses–based BCI has not usually
been used by disabled people due to several reasons. The
barriers to use it are mainly related to its potential danger
of evoking epilepsy. The conventional SSVEP can be evoked
by visual stimulator flashing with below frequencies 50 Hz
of human vision dynamic resolution threshold. The major
reason why SSVEP BCI has not been used is because it is
known that optical flashing could cause epileptic seizure called
photosensitive epilepsy (PSE) for in about 10% of children
suffering from epilepsy [3], [4]. This effects became famous
due to Pokémon incident which made a number of children
to suffer from the PSE related symptoms [5]. Unfortunately,
4% to 9% of all population carries the epileptic potential
which often remains undetected even in adult people [6].
Because of the above reasons, the SSVEP device carries a
potential danger of PSE. Moreover, the light flashing with
lower frequency causes often user exhaustion when gazing
at it for longer time. Based on the above limitations of the
conventional SSVEP devices, we propose a safer option for
BCI using green–blue color light (note that the Pokémon
incident was caused by red-blue color flashing). The con-
ventional SSVEP BCI uses monochromatic flashing which is
relatively dangerous, on the other hand, the proposed green–
blue light option is the safest choice as recently reported
in [7]. To avoid a limitation imposed by a fixed refreshing
rate of a general computer display (liquid crystal display -
LCD or cathode ray display - CRT) which also evokes an
unrelated SSVEP frequency, the light-emitting diodes (LEDs)
are used to generate visual stimulus. Fortunately, the amplitude
of SSVEP evoked by LEDs are stronger than that of LCD
and CRT [8]. In experiments presented in this paper, we
test 7, 18, 25, 39 Hz flashing frequency SSVEP stimuli. We
compare the classification accuracy of SSVEP–based BCI be-
tween response to conventional monochromatic (white–black)
and the proposed chromatic (green–blue) flashing. We also
report user preferences obtained from questionaries after the
experiments.

II. MATERIALS AND METHODS

The experiments reported in this paper were performed in
the Life Science Center of TARA, University of Tsukuba,
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Fig. 1. The difference between conventional monochromatic (ON–OFF) and
the proposed chromatic (green–blue) flashing patterns created with square
waves by ARDUINO UNO micro–controller board.

Japan. All the details of the experimental procedure and
the research targets of this approach were explained to the
three human subjects, who agreed voluntarily to take a part.
The psychophysical and online electroencephalogram (EEG)
BCI experiments were conducted in accordance with The
World Medical Association Declaration of Helsinki - Ethical
Principles for Medical Research Involving Human Subjects.
The experimental procedures were approved and designed
in agreement with the ethical committee guidelines of the
Faculty of Engineering, Information and Systems at Univer-
sity of Tsukuba, Tsukuba, Japan (experimental permission
no. 2013R7). Three volunteer subjects participated in the
experiments. The average age of the subjects was 29.3 years
old (standard deviation of 12.7 years old; three male partici-
pants). In the following sections we explain details of the safer
SSVEP stimulus creation, together with the EEG experimental
protocols.

A. Visual Stimulus Generation

The visual stimuli were flashed via white or RGB LEDs as
square waves generated by ARDUINO UNO micro–controller
board as shown in Figure 1 using software written by our
project members. In this study we used 7, 18, 25, 39 Hz
flashing patterns to create four commands SSVEP-based BCI
paradigm. During experiments the LEDs continued to flash
simultaneously with the above different frequencies. The two
monochromatic and chromatic LED SSVEP setups used in the
experiments are presented in Figures 2 and 3.

The LEDs were arranged in a rectangular 7.4 × 5.8 cm
pattern. Such short distances arrangement was decided to allow
the target ALS/LIS patients in the future to use the interface
with minimal eye movements necessary to switch among the
patterns. In the training phase, to let subjects gaze at specific
LEDs, the experiment instructions were delivered acoustically
by means of the OpenViBE [9] environment and a Python
program designed by our team as depicted in form of an user
interface display in Figure 4.

B. BCI EEG Experiment Protocol

During the BCI EEG experiments the subjects were seated
on comfortable chair in front of LED displays (see Fig-
ures 2 and 3). The distance between subject eyes and LEDs
was about 30 ∼ 50 cm (chosen by the subjects for comfortable

Fig. 2. Conventional monochromatic (ON–OFF) LEDs arrangement. In the
experiments presented in this paper the following flashing frequencies were
used: top–left 7 Hz; bottom–left 18 Hz; bottom–right 25 Hz; and top–right
39 Hz. The LEDs were arranged in the 7.4 × 5.8 cm rectangular pattern.
All LEDs are connected to ARDUINO UNO micro–controller board which
generated four square waves with different frequencies.

Fig. 3. Proposed chromatic (green–blue) LED interface. (where left up: 7 Hz,
left down: 18 Hz, right down: 25 Hz and right up: 39 Hz). In the experiments
presented in this paper the following flashing frequencies were used: top–left
7 Hz; bottom–left 18 Hz; bottom–right 25 Hz; and top–right 39 Hz. The
LEDs were arranged in the 7.4 × 5.8 cm rectangular pattern. All LEDs are
connected to ARDUINO UNO micro–controller board which generated four
paris of phase shifted square waves with different frequencies (see Figure 1
for details).

view of all LEDs). The ambient light was moderate as in a
typical office. The EEG signals were captured with a portable
EEG amplifier system g.USBamp by g.tec Medical Engineer-
ing, Austria. The 8 active wet EEG electrodes were connected
to the head locations O1, O2, Po3, Po4, P1, P2, Oz, and
Poz as in an extended 10/10 international system [10]. These
positions were decided due to the visual cortex responses
targeting experiment type [1] [11]. The ground electrode was
attached to head location FPz and the reference electrode



Fig. 4. OpenViBE interface used in experiments reported in this paper. The
bottom window called acquisition server acquired the EEG signals from
g.USBamp amplifier and it sent them to the main window process. The main
window was called an OpenViBE designer which could be used for the visual
programing of the whole experiment process flow. The EEG data obtained
from the acquisition server was received by an acquisition client box and
next recorded by connecting to an EDF file writer box. The window located
in middle–right of the captured display showed raw EEG signals obtained
from acquisition server during the experiment.

was attached to a left earlobe. Details of EEG experiment
set up are summarized in Table I. The sampling frequency
was set to 512 Hz and a notch 4th order Butterworth IIR
filter at rejection band of 48 ∼ 52 Hz was applied to
remove power line interference of 50 Hz. The recorded EEG
signals were captured and preprocessed by the OpenViBE
based application [9]. The 8 channels EEG signals were next
filtered with 8th order Butterworth IIR high-pass filter set
at 5 Hz cutoff frequency. Each experimental run took about
245 seconds, subjects gazed at each LED for six seconds after
acoustic instruction generated and the EEG data were recorded
five seconds after one second of the instruction time. The
instruction let the subject to execute a saccade and to focus
at a target LED. The auditory instruction were delivered as
recorded author’s voice (for Japanese speaking subjects) or in
form of synthesized MacOS X system voice (Serena’s voice
for English speaking subjects) via OpenViBE. In a single BCI
EEG experimental run experiment there were forty trials to
gaze at each LED (ten trials for each target frequency stim-
ulus). Each experimental session consisted of four repeated
runs for the conventional monochromatic (white–black) and
the proposed (green–blue) patterns respectively.

C. SSVEP Responses Classification

For SSVEP responses classification a soft margin support
vector machine (C-SVM) [12], [13] was chosen. The C-SVM
classification output was calculated as follows,

f(x) = wTx+ b, (1)

TABLE I
EEG EXPERIMENT CONDITION DETAILS

Number of subjects 3

Recording length 5000 ms for each trial

Stimulus frequencies 7, 18, 25, 39 Hz

g.USBamp with active wet
EEG recording system EEG electrodes system

Number of EEG channels 8

Electrode locations O1, O2, Po3, Po4, P1, P2, Oz and Poz
Reference electrode Left earlobe

Ground electrode FPz
Notch filter Butterworth 4th order with rejection

band of 48 ∼ 52 Hz

High–pass filter Butterworth 8th order at 5 Hz

Stimulus output devices White or RGB LEDs

LEDs positions Edges of a rectangle 5.8× 7.4 cm

Number of runs 4 for each LED display colors

while the classifiers weights are trained as,

minimize
1

2
w2 + C

∑
i

ξi (2)

subject to f(xi)(wxi + b) ≥ 1− ξi ξi ≥ 0,

where f(x) was evaluation function based on trained w and
b; x stood for input feature vector extracted as power spectral
density; C was a constant for soft–margin and it was set as 1
in this experiment; ξ represented non–negative slack variable
which measured the degree of misclassification of the data
x. To train classifier, the w and b should be optimized by
calculating equation (2) with training feature vector x. After
the f(x) was designed by optimization, it could predict the
class for input vector x.

For linear C-SVM training, the features were calculated as
power spectral densities (PSD) based on Welch’s method [14].
The Welch’s method PSD was calculated as follows.

P̂ (fn) =
1

K

K∑
k=1

Ik(fn), (3)

where

Ik(fn) =
L

U
|Ak(n)|2 (4)

U =
1

L

L−1∑
j=0

W 2(j) (5)

and

Ak(n) =
1

L

L−1∑
j=0

Xk(j)W (j)e−2kijn/L (6)

Xk(j) = X(j + (K − 1)D) j = 0, · · · , L− 1. (7)

P̂ (fn) stood for result of spectral estimation; K was the
number of segments applied for one sequential data X(j) to
be split. In this case, K was set to 8; L was a number of
samples included in each segment. Each segment had 50% of



overlapping samples; W (j) was a shape of a window applied
by Fourier transform (the Hamming window was used in
the presented approach). The exemplary mean power spectral
densities have been shown in Figure 5 for different stimulus
frequencies.

To avoid the so called “curse of dimension”, we chose the
value of Welch’s PSD as features only frequency bins at ±1
of LEDs flashing pattern. Thus, the feature vector used for
linear C-SVM training was constructed by 10× 96 matrix for
each target frequency. A test data used for classification was
constructed as 1× 96 feature vector in each single trial.

D. EMD–based Filtering of SSVEP Responses

In order to further enhance SSVEP response features as
proposed in [15], an univariate empirical mode decomposition
(EMD) approach was applied to decompose the EEG channels
into intrinsic mode functions (IMF). Only the IMFs fitting
frequencies of the used SSVEP frequencies were reconstructed
creating an adaptive and data–driven filtering approach.

III. RESULTS

This section presents and discusses results that were ob-
tained from offline BCI EEG experiments based on classifica-
tion accuracies from a soft margin support vector machine (C-
SVM) [12], [13]. We also included results from questionnaires
given to the subjects after experiments.

A. EEG Experiment Results

The results of the SSVEP EEG experiment are summarized
in Table II and Figure 6 with results calculated by a multi–class
linear C-SVM classifier using libsvm [13] library in MATLAB.
The boxplots in Figure 6 show mean results of classification
accuracies when one out of four sessions was used as training
data (a single boxplot was calculated from the 12 C-SVM
classification results).

The results of subject #1 showed significant difference be-
tween conventional and proposed LED types. The significance
test was conducted in form of pairwise t–test (p < 0.0001).
The remaining two subjects did not resulted with significant
differences (p ≈ 0.0806 and p ≈ 0.3806 respectively),
although all means were above the chance levels.

Next, to confirm how we could possibly shorten the training
and test recording datasets, we applied the same classification
to EEG signals recorded as in 1, 2, 3, 4, or 5 seconds long
intervals. The results are shown in Figure 7 in form of boxplots
of median accuracies. These results have shown that the longer
the recording time, the more accurate results could appear
except for subject #2 who did not improve at all. Also, the
p−values of each set results were calculated by pairwise t-tests
and they are shown in Table III.

The results of subjects #1 and #3 formed monotonic
increase for each stimulus color type. Moreover the proposed
method scored with higher accuracy results. Moreover, results
of subject #1 showed significant difference (conventional
versus proposed) in a range from 2 to 5 seconds. On the
other hand, results of subject #3 did not contain significant

Fig. 5. Mean power spectral densities with standard error bars calculated by
Welch’s method. The blue line depicts PSD of 7 Hz SSVEP. The red, green,
black are 18, 25, and 39 Hz respectively. These magnitude values of peaks and
their neighboring ±1 Hz bins were used as feature vectors for classification.

TABLE II
SINGLE TRIAL BASED BCI ACCURACY (NOTE, THEORETICAL CHANCE

LEVEL WAS OF 25%) USING THE C-SVM CLASSIFIER.

Subject number The averaged classification accuracy
chromatic monochromatic

#1 71.0% 54.0%

#2 35.8% 31.7%

#3 53.3% 50.2%

Average 53.4% 45.3%

differences except for the result of 1 s intervals. The above
mentioned results allowed us to draw a conclusion of the
proposed method superiority.

B. Subject Questionnaire Results

Results of questionnaires given for every subject have been
summarized in Table IV. There were two questions asked to



Fig. 6. SSVEP EEG experiment C-SVM classification accuracy distributions
of all trials for each subject in form of the boxplots depicting medians,
interquartile ranges and outliers (blue plus marks). Yellow boxes show
classification accuracy of SSVEP response to conventional monochromatic
flashing method. The green color depicts response to proposed chromatic
(green–blue) flashing. Each number at the horizontal axis indicates subject’s
number. The vertical axis reports classification accuracy results. There was
a significant difference observed for subject #1 between. The numerical
accuracy results are summarized in Table II.

TABLE III
CHROMATIC VERSUS MONOCHROMATIC PAIRWISE T-TEST RESULTING

p−VALUES OF THE CLASSIFICATION ACCURACY RESULTS

Subject number training intervals [s]
1 2 3 4 5

#1 0.146 0.032∗ 0.003∗ 0.000∗ 0.000∗
#2 0.012∗ 0.866 0.077 0.203 0.081

#3 0.027∗ 0.066 0.627 0.381 0.381

the subjects as follows:
• Which stimulus did your prefer monochromatic versus

chromatic (response range −5 ∼ 5)?
• Please evaluate experiment tiredness from tiring to relax-

ing (response range −5 ∼ 5).
When the preference response was positive, the subject

preferred chromatic (green–blue) flashing comparing to the
monochromatic (white–black). Similarly, the tiredness positive
scores reflected the subjects’ lower tiredness with the chro-
matic (green–blue) LEDs. Except for preference of subject
#3, the preference and tiredness scores were positive. In other

Fig. 7. SSVEP EEG classification results of every subject based on different
signal analysis time windows (1, 2, 3, 4, and 5 seconds long) used for feature
extraction and classification. The horizontal axis shows each time window
length. The cyan color doted horizontal line represents theoretical chance
level of 25%. These results conferment that the majority of accuracies were
above a chance level and they formed monotonic increases except for subject
#2. Fortunately, accuracy results of the proposed method were higher than
that of conventional one. The p−values of pairwise t-test are summarized in
Table III.

TABLE IV
QUESTIONNAIRE RESULTS FROM POINT OF VIEW OF PREFERENCE AND

TIREDNESS

Subject number Preference Tiredness

#1 3 1

#2 5 3

#3 −1 4

Average 2.33 2.67

words, the subjects felt that the proposed method has been
better from the point of view of the mental preference and
tiredness.

C. Results of EMD–based SSVEP Preprocessing

Classification accuracy improvement of EMD preprocessing
of SSVEP responses has been summarized in Figure 8. The
very encouraging results have been obtained in frequency



Fig. 8. Classification improvement obtained with EMD–based SSVEP re-
sponses preprocessing. Compare results with classification accuracies reported
in Figure 7.

matched training and test sets offline classification settings.
This would require for online application a cascade of classi-
fiers trained in one–versus–others configuration with a second
level final judgment decision making unit.

IV. CONCLUSIONS

The safer SSVEP–based BCI method with chromatic stimuli
has been discussed in this paper. In order to realize the
purpose, we aimed to test the chromatic (green–blue) flashing
LEDs in comparison with classical SSVEP stimuli. This paper
reported a successful implementation of the four command–
based SSVEP BCI in offline signal analysis scenario. We
conducted experiments to verify the feasibility and user ex-
perience of the proposed method. According to the results
obtained from three subjects, classification accuracy of SSVEP
evoked by proposed stimuli were as good or even better as of
the conventional monochromatic stimuli. Moreover, majority
of the BCI accuracies scored above chance levels for the
proposed method even if the time window of features drawn
for the classification was only one second long. In addition to

these results, the subjects preferred the proposed green–blue
LED flashing.

For future research, we aim to validate the prototype chro-
matic SSVEP–based BCI with more users to further proof the
results. We will also aim at reduction of the time window for
even better usability of the proposed chromatic SSVEP–based
BCI paradigm.
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