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Abstract. In this paper we address the problem of overcomplete BSS
for convolutive mixtures following a two-step approach. In the first step
the mixing matrix is estimated, which is then used to separate the sig-
nals in the second step. For estimating the mixing matrix we propose
an algorithm based on hierarchical clustering, assuming that the source
signals are sufficiently sparse. It has the advantage of working directly on
the complex valued sample data in the frequency-domain. It also shows
better convergence than algorithms based on self-organizing maps. The
results are improved by reducing the variance of direction of arrival. Ex-
periments show accurate estimations of the mixing matrix and very low
musical tone noise.

1 Introduction

High quality separation of speech sources is an important prerequisite for fur-
ther processing like speech recognition. Often the underlying mixing process is
unknown, which requires blind source separation (BSS). In general we can dis-
tinguish two cases depending on the number of sources N and the number of
sensors M:

N > M| overcomplete BSS
N < M| (under-) complete BSS

Since undercomplete BSS (N < M) can be reduced to complete BSS (N = M)
[1] we refer to both by complete BSS. Most approaches assume complete mixtures
[2,3], but in reality often the contrary is true. While the area of overcomplete
BSS has obtained more and more attention [4-12], it still remains a challenging
task.

Several of the proposed algorithms are based on histograms and developed
for only two sensors [4-6]. Some could, in principle, be enhanced for higher di-
mensions M. But since histograms are based on densities, the so called curse
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of dimensionality [13] sets practical limits on the number of usable sensors. An-
other problem occurs with complex numbers, which cannot be handled straight-
forwardly by histograms, but are necessary if BSS is performed in the frequency-
domain. Some methods approach complex numbers by applying real-valued al-
gorithms to the real and imaginary part or amplitude and phase [7,8], which
is not always applicable. Some approaches extract features like the direction-of-
arrival (DOA) or work on the amplitude relation between two sensor outputs
[4,5,9,10]. In both cases only two sensors can contribute, no matter how many
sensors are available.

Other algorithms like GeoICA [12] or AICA [11] resemble self-organizing
maps (SOM) and could more easily be applied to convolutive mixtures. However,
their convergence depends on initial values.

In this paper we propose the use of hierarchical clustering embedded into a
two-stage framework of overcomplete BSS to deal with convolutive mixtures in
the frequency-domain. This method can work directly on the complex valued
samples. While it does not limit the usable numbers of sensors, it also prevents
the convergence problems which can occur with SOM based algorithms.

After estimating the mixing matrix in the first stage, a maximum a-posteriori
(MAP) approach is applied to finally separate the mixtures, assuming statistical
independence and Laplacian pdfs for the sources [14].

In Sec. 2 we first explain the general framework before we give details about
the hierarchical clustering in Sec. 3 and the MAP based source separation in
Sec. 4. After this, we present experimental results in Sec. 5 demonstrating the
performance for convolutively mixed speech data in a real room with reverber-
ation time Tr = 130ms.

2 General Framework

‘We will consider a convolutive mixing model with N sources s;(¢) (i=1...N)
and M (M < N) sensors that yield linearly mixed signals z;(t) (j = 1...M).
The mixing can be described by z;(t) = Zi\]:l Yooy hji(l)si(t — 1), where hyji(t)
denotes the impulse response from source i to sensor j.

Instead of solving the problem in the time-domain, we choose a narrowband
approach in the frequency domain by applying a short-time discrete Fourier
transform (STDFT). Thus time-domain signals s(t) = [s1(t),...,sn(t)]T and
x(t) = [z1(t),...,zm(t)]T are converted into frequency-domain time-series
S(f,7) = [S1(f,7),- .., Sn(f,7)]T and X, = X(f,7) = [X2(f,7), ..., Xn(f,
7)]T by an L-point STDFT, respectively. Thereby f =0, f5/L, ..., fs(L—}\)/L
(fs: sampling frequency; 7: time dependence). Let us define H(f) € CM*V as
a matrix whose elements are the transformed impulse responses. We call the
column vectors h;(f) (¢ =1,..., N) mixing vectors and approximate the mixing
process by

X(f, ) =H(f)S(f,7) 1)

This reduces the problem from convolutive to instantaneous mixtures in each

frequency bin f. For simplicity we will omit the dependence on frequency and
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Fig. 1. Overall unmixing system.

time. Switching to the frequency domain has the additional advantage that the
sparseness of the sources is increased [7]. This is very important, since the hier-
archical clustering is based on the assumption of sparse sources.

The disadvantage of narrowband BSS in the frequency domain is the permu-
tation problem, which results in wrong alignments of the frequency bins. In our
framework we use a DOA based method to reduce the permutation problem [3].
We also apply the minimum-distortion-principle [2] to solve the scaling problem.

In complete BSS the mixing matrix H is square and (assuming full rank)
invertible. Therefore the BSS problem can be solved by either inverting an esti-
mate of the mixing matrix or directly estimating its inverse and solving (1) for
S.

However, this approach does not work in overcomplete BSS where the mixing
matrix is not invertible. Therefore we follow a two-stage approach as proposed in
[7] consisting of blind mixing model recovery (BMMR) and blind source recovery
(BSR). To estimate the mixing matrix in the BMMR step, we propose the use of
hierarchical clustering as described in detail in Sec. 3. To eventually separate the
signals in the BSR step, we utilize a MAP based approach. Finally the inverse
STDFT is applied to obtain time-domain signals. The overall system is depicted
in Fig. 1.

3 Blind Mixing Model Recovery

Several algorithms have been proposed so far for BMMR. They usually have in
common that they assume a certain degree of sparseness of the original signals.
In this paper we consider signals that are sparse in the time-frequency domain.
That means that different signals are rarely active at the same time-frequency
instant (f,7). This assumption leads to the conclusion that the samples in the
mixed vector space X(f,7) cluster around the true mixing vectors h;(f). This
becomes clear when we consider the most sparse case when only a single source
is active. Let us rewrite (1) as

N
X(f,7) =Y hi(F)Silf7) 2

i=1
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Assuming only one source active at (f, 7) means that the vector pointing to the
resulting mixed sample X(f, ) is a scaled version of the corresponding mixing
vector h;(f). Depending on the actual sparseness of the source signals, the mixed
signals will also have components of other signals and therefore be spread around
the mixing vectors. In order to obtain a different cluster for each source signal
S; we assume a different mixing vector h;(f) for each source signal.

3.1 Hierarchical Clustering

To avoid the problems discussed in Sec. 1, such as the curse of dimensionality
or poor convergence, we propose the use of a hierarchical clustering algorithm
following an agglomerative (bottom-up) strategy [13]. This means that at the
beginning we consider each sample as a cluster that contains only one object.
From there clusters are combined, so that the number of clusters decreases while
the average number of objects per cluster increases. In the following we assume
phase and amplitude normalized samples.

= ——e X1 (3)

where ¢x, denotes the phase of the first component of X.

The combination of clusters into new clusters is an iterative process and
based on the distance between the current clusters. Starting from the normalized
samples, the distance between each pair of clusters is calculated, resulting in a
distance matrix. The two clusters with the least distance are combined and form
a new binary cluster. This process is called linking and repeated until the final
number of clusters has decreased to a predetermined number ¢, N < ¢ < P (P:
total number of samples).

For measuring the distance between clusters we have to distinguish between
two different problems. First we need a distance measure d(Xr,,X,) that is
applicable to M-dimensional complex vector spaces. While there are several
possibilities, we currently use the Euclidean distance defined by

d(XTUXTz) == \/< (x‘rx e XTz)v (X"'l i X'rz)* > (4)

where < - > stands for the inner product and * for complex conjugation.

When a new cluster is formed, we need to enhance this distance measure to
relate the new cluster to the other clusters. The method we employ here is called
the nearest-neighbor technique. Let C; and C» denote two clusters as illustrated
in Fig. 2. Then the distance d(Ci,C2) between these clusters is defined as the
minimum distance between its samples by

d(Cy,Cs) = i d(X., X 5
( L 2) XTIECT1§1—2€CZ ( i H] Tz) ( )
As mentioned earlier, most of the samples will cluster around the mixing
vectors h;, depending on the sparseness of the original signals. Special attention
must be paid to the remaining samples (outliers), which are randomly scattered
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Fig. 2. Illustration of distances. Fig. 3. Estimation of mixing vectors.

in the space between the mixing vectors. Usually they are far away from other
samples and will be combined with other clusters only at higher levels of the
clustering process (i.e. when only few clusters are left). This led us to the idea
to set the final number of clusters at a high number

c>N (6)

By doing so, we avoid linking these outliers with the clusters around the mix-
ing vectors h; and therefore distortions. This results in more robustness. More
important, however, is the fact that we avoid combining desired clusters. Since
the outliers are often far away from other clusters it might happen that desired
clusters are closer to each other than to outliers. An example for the resulting
clusters is shown in Fig. 3. Experimental details are given in Sec. 5.

3.2 Estimation of Mixing Matrix

Assuming that the clusters around the mixing vectors h; have the highest densi-
ties and therefore the highest number of samples we finally choose the N largest
clusters. Thereby the number of sources /N must be known. To obtain the mixing
vectors, we average over all samples of each cluster

h; = |C|Zx 1<i<N (7)
xeC;

where |C;| denotes the cardinality of cluster C;. Thereby we assume that the
influence of other sources has zero mean.

3.3 Advantages of Hierarchical Clustering

Among the most important advantages of the described hierarchical clustering
algorithm is the fact that it works directly on the sample data in any vector space
of arbitrary dimensions. The only requirement is the definition of a distance
measure for the considered vector space. Therefore, it can easily be applied to
complex valued data that occurs in frequency-domain convolutive BSS.
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No initial values for the mixing vectors h; are required. This means, in par-
ticular, that if the assumption of clusters with high densities around the mixing
vectors is true, then the algorithm converges to those clusters.

Besides choosing a distance measure, there is only the single parameter c that
determines the number of clusters. Experiments have shown that the choice for
this parameter in the noiseless case is quite insensitive as long as it is above a
certain limit that would combine desired clusters. Its choice is, in general, related
to the sparseness of the sources. The sparser the signals are, the smaller the value
of ¢ can be chosen, because the number of outliers that must be avoided will be
smaller.

While the considered signals must have some degree of sparseness, they do
not have to be statistically independent at this point.

3.4 Reduction of DOA Variance

Experiments have shown that as long as there are clusters around the mixing
vectors h;, the estimation results are of high quality. Even if the assumption of
clear clusters is not true for all mixing vectors, the remaining ones are not influ-
enced by poor estimation of others. In order to improve the wrongly estimated
mixing vectors, we can utilize DOA information. While the mixing matrix is dif-
ferent for each frequency bin, the phase difference Ap; between the components
of a mixing vector h; contains information about the relative physical position of
its corresponding source. Assuming a linear sensor array in a far-field situation
with plain wave fronts, the DOA 6; is given by

6; = cos™! (?f;g) (8)

where v denotes the sound velocity, d the distance between the corresponding
sensors. Since 6; is theoretically constant for all frequency bins, we can consider
the DOA of the i-th signal as a random variable (RV) 6; with mean p; and
variance o2. While even the DOA of the original mixing matrix has a variance
larger than 0, the results for the estimated mixing matrix can be improved if the
variance of its DOAs is reduced. R

For this purpose we define a new RV 6; with reduced variance by

b; = Vebi + (1 — Vo), 0<e<1 ©)

While its mean is still »;, its variance 3% can be adjusted by € and yields
G2 =eo? (10)
We apply the new DOA by adjusting the phase of the mixing vectors h;. Since

we do not need absolute DOA information, this improvement fully complies with
the blind approach of BSS.
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4 Blind Source Recovery

Since the mixing matrix cannot be inverted in overcomplete BSS, the unmixed
signals cannot be directly obtained. Several approaches have been proposed to
solve blind source recovery [14]. Among those we chose the shortest-path al-
gorithm which is based on maximum a-posteriori (MAP) estimation, assuming
statistical independence and Laplacian pdfs for the sources. Given the mixed
signals X and the mixing matrix H, the sources S are recovered by

N
S = arg_in_ ; 15| (11)

This equation can be interpreted as finding the shortest-path decomposition,
based on the mixing vectors h; for each sample X, separately. It means that
each sample is assigned to exactly M signals. While (11) can, in general, be

solved for real numbers by linear programming, we explicitly compute all (z)

possible decompositions and choose the one that minimizes Efil |S;|. Taking a
selection of M mixing vectors hy, ...h;,,, the decomposition is calculated by

S=[h;...h;, ] ' x 8150 rinr € {1,..., N} (12)

5 Experimental Results

We performed experiments with the proposed algorithm using N = 3 speech
signals and M = 2 sensors. The signals were taken from the Acoustical Society
of Japan (ASJ) continuous speech corpus. The convolution was done with room
impulse responses that were recorded at our laboratory. Further experimental
conditions are given in Table 1. As performance measure, we used the signal-to-

interference ratio SIR; = 10log (%) where y#(t) is the portion of y;(t)
. tYi

that comes from s;(t) and y¥ (£) = vi(t) — y3(t). We also evaluated the signal-

to-distortion ratio (SDR) as described in [15].

Table 1. Experimental conditions.

Direction of sources 50°, 90°, 120°
Distance of sensors 40 mm
Length of source signals 7.4 seconds
Reverberation time Tr 130ms
Sampling rate 8 kHz
Window type von Hann
Filter length 1024 points
Shifting interval 256 points
Cluster threshold ¢ (const Vf)[100

Variance factor & 0.8
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As an upper limit for the performance of the whole system, scenario 1 in
Table 2 shows the separation results when the original mixing matrix is used.
This means that the permutation problem does not occur and the BSR part is
given the best possible input.

Table 2. Performance of different parts of the separation system.

N =3, M =2, Tg = 130ms||Source 1|Source 2|Source 3|Average
Scenario 1|SIR (dB) 14.8 13.9 11.7 13.50
SDR (dB) 13.39 6.83 10.55 | 10.26
Scenario 2|SIR (dB) 10.5 6.4 9.3 8.73
SDR (dB) 747 2.82 5.99 5.43
Scenario 3|SIR (dB) 11.1 9.9 8.9 9.95
SDR (dB) 9.65 4.05 5.95 6.55

Scenario 2 gives the results if we use the estimated mixing matrix without
reduction of DOA variance. The last scenario shows the results if the estimated
mixing matrix is used together with reduction of DOA variance. Figure 3 gives
an example for the clustering for f = 1164Hz. To visualize, the real part of the
first component X; versus the imaginary part of the second component X is
plotted. The N largest clusters (black) around the original mixing vectors h;
(dashed) can be clearly seen and result in precise estimations (solid).

Subjective evaluation of the separated sources showed very low musical tone
noise.

6 Conclusion

We proposed the application of hierarchical clustering embedded into a two-stage
framework of overcomplete BSS for convolutive speech mixtures. This method
can work directly on the complex mixture samples. It also prevents the conver-
gence problems which can occur with SOM based methods like GeoICA. Ex-
perimental results confirmed that the assumption of sparseness and, therefore,
clusters around the mixing vectors is sufficiently fulfilled for convolutively mixed
speech signals in the frequency domain.

References

1. Winter, S., Sawada, H., Makino, S.: Geometrical interpretation of the PCA sub-
space method for overdetermined blind source separation. In: Proc. ICA 2003.
(2003) 775-780

2. Matsuoka, K.: Independent component analysis and its applications to sound signal
separation. In: Proc. IWAENC 2003, Kyoto (2003) 15-18

3. Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for
solving the permutation problem of frequency-domain blind source separation. In:
Proc. ICA 2003. (2003) 505-510

4. Yilmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency
masking. IEEE Transactions on Signal Processing (2004) (to appear).



660

10.

11

12.

13.

14.

15.

Stefan Winter et al.

. Rickard, S., Yilmaz, O.: On the approximate W-disjoint orthogonality of speech.

In: Proc. ICASSP 2002. (2002) 529-532

. Vielva, L., Santamaria, I., Pantaleon, C., Ibanez, J., Erdogmus, D.: Estimation

of the mixing matrix for underdetermined blind source separation using spectral
estimation techniques. In: Proc. EUSIPCO 2002. Volume 1. (2002) 557-560

. Bofill, P., Zibulevsky, M.: Blind separation of more sources than mixtures using

sparsity of their short-time fourier transform. In: Proc. ICA 2000. (2000) 87-92

. Bofill, P.: Underdetermined blind separation of delayed sound sources in the fre-

quency domain. Neurocomputing 55 (2003) 627-641

. Araki, S., Makino, S., Blin, A., Mukai, R., Sawada, H.: Blind separation of more

speech than sensors with less distortion by combining spareseness and ica. In:
Proc. IWAENC 2003. (2003) 271-274

Blin, A., Araki, S., Makino, S.: Blind source separation when speech signals out-
number sensors using a sparseness - mixing matrix estimation (SMME). In: Proc.
IWAENC 2003. (2003) 211-214

Waheed, K., Salem, F.M.: Algebraic overcomplete independent component analy-
sis. In: Proc. ICA 2003. (2003) 1077-1082

Theis, F.: Mathematics in independent component analysis. PhD thesis, University
of Regensburg (2002)

Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data
mining, inference, and prediction. Springer Series in Statistics. Springer-Verlag
(2002)

Vielva, L., Erdogmus, D., Principe, J.C.: Underdetermined blind source separation
using a probabilistic source sparsity model. In: Proc. ICA 2001. (2001) 675-679
Sawada, H., Mukai, R., de la Kethulle de Ryhove, S., Araki, S., Makino, S.: Spectral
smoothing for frequency-domain blind source separation. In: Proc. IWAENC 2003.
(2003) 311-314





