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Abstract—This paper proposes a new formulation and op-
timization procedure for grouping frequency components in
frequency-domain blind source separation (BSS). We adopt two
separation techniques, independent component analysis (ICA)
and time–frequency (T–F) masking, for the frequency-domain
BSS. With ICA, grouping the frequency components corresponds
to aligning the permutation ambiguity of the ICA solution in
each frequency bin. With T–F masking, grouping the frequency
components corresponds to classifying sensor observations in
the time–frequency domain for individual sources. The grouping
procedure is based on estimating anechoic propagation model
parameters by analyzing ICA results or sensor observations. More
specifically, the time delays of arrival and attenuations from a
source to all sensors are estimated for each source. The focus of
this paper includes the applicability of the proposed procedure for
a situation with wide sensor spacing where spatial aliasing may
occur. Experimental results show that the proposed procedure
effectively separates two or three sources with several sensor
configurations in a real room, as long as the room reverberation
is moderately low.

Index Terms—Blind source separation (BSS), convolutive
mixture, frequency domain, generalized cross correlation, in-
dependent component analysis (ICA), permutation problem,
sparseness, time delay estimation, time–frequency (T–F) masking.

I. INTRODUCTION

THE TECHNIQUE for estimating individual source com-
ponents from their mixtures at multiple sensors is known

as blind source separation (BSS) [3]–[6]. With acoustic appli-
cations of BSS, such as solving a cocktail party problem, sig-
nals are generally mixed in a convolutive manner with rever-
berations. Let be source signals and be
sensor observations. The convolutive mixture model is formu-
lated as

(1)
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where represents time, and represents the impulse re-
sponse from source to sensor . In a practical room situa-
tion, impulse responses can have thousands of taps even
with an 8-kHz sampling rate. This makes the convolutive BSS
problem very difficult compared with the BSS of simple instan-
taneous mixtures.

An efficient and practical approach for such convolutive
mixtures is frequency-domain BSS [7]–[25], where we apply a
short-time Fourier transform (STFT) to the sensor observations

. In the frequency domain, the convolutive mixture (1) can
be approximated as an instantaneous mixture at each frequency

(2)

where represents frequency, is the frequency response
from source to sensor , and is the time–frequency
representation of a source signal .

Independent component analysis (ICA) [3]–[6] is a major sta-
tistical tool for BSS. With the frequency-domain approach, ICA
is employed in each frequency bin with the instantaneous mix-
ture model (2). This makes the convergence of ICA stable and
fast. However, the permutation ambiguity of the ICA solution in
each frequency bin should be aligned so that the frequency com-
ponents of the same source are grouped together. This is known
as the permutation problem of frequency-domain BSS. Various
methods have been proposed to solve this problem. Early work
[7], [8] considered the smoothness of the frequency response of
separation filters. For nonstationary sources such as speech, it is
effective to exploit the mutual dependence of separated signals
across frequencies either with simple second-order correlation
[9]–[12] or with higher order statistics [17], [18].

Spatial information of sources is also useful for the per-
mutation problem, such as the direction-of-arrival of a source
[12]–[14] or the ratio of the distances from a source to two
sensors [15]. Our recent work [16] generalizes these methods
so that the two types of geometrical information (direction
and distance) are treated in a single scheme, and also the BSS
system does not need to know the sensor array geometry. When
we are concerned with the directions of sources, we generally
prefer the sensor spacing to be no larger than half the minimum
wavelength of interest to avoid the effect of spatial aliasing [26].
We typically use 4-cm sensor spacing for an 8-kHz sampling
rate. However, there are cases where widely spaced sensors
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are used to achieve better separation for low frequencies. Or,
if we increase the sampling rate, for example up to 16 kHz,
to obtain better speech recognition accuracy for separated sig-
nals, spatial aliasing occurs even with 4-cm spacing. If spatial
aliasing occurs at high frequencies, the ICA solutions in these
frequencies imply multiple possibilities for a source direction.
Such a problem is troublesome for frequency-domain BSS as
previously pointed out [14], [27].

There is another method for frequency-domain BSS, which is
based on time–frequency (T–F) masking [19]–[23]. It does not
employ ICA to separate mixtures, but relies on the sparseness
of source signals exhibited in time–frequency representations.
The method groups sensor observations together for each source
based on spatial information extracted from them. In [22], we
applied a technique similar to that used with ICA [16] to clas-
sify sensor observations for T–F masking separation. From this
experience, we consider the two methods, ICA-based separation
and T–F masking separation, to be very similar in terms of ex-
ploiting the spatial information of sources.

Based upon the above review of previous work and related
methods, this paper proposes a new formulation and opti-
mization procedure for grouping frequency components in
the context of frequency-domain BSS. Grouping frequency
components corresponds to solving the permutation problem
in ICA-based separation, and to classifying sensor observa-
tions in T–F masking separation. In the formulation, we use
relative time delays and attenuations from sources to sensors
as parameters to be estimated. The idea of parameterizing time
delays and attenuations has already been proposed in previous
studies [20], [21], [24], where only simple two-sensor cases
were considered without the possibility of spatial aliasing. The
novelty of this paper compared with these previous studies and
our recent work [16], [22] can be summarized as follows.

1) Two methods of ICA-based separation and T–F masking
separation are considered uniformly in terms of grouping
frequency components.

2) The problem of spatial aliasing is solved by the proposed
procedure, not only for ICA-based separation but also for
T–F masking separation, thanks to 1).

3) It is shown that the time delay parameters in the formu-
lation are estimated with a function similar to the Gener-
alized Cross Correlation PHAse Transform (GCC-PHAT)
function [23], [28]–[30]. And the proposed procedure in-
herits the attractive properties of our recently proposed ap-
proaches [16], [22].

4) The procedure can be applied to any number of sensors and
is not limited to two sensors.

5) The complete sensor array geometry does not have to be
known, only the information about the maximum distance
between sensors. If the complete geometry were known,
the location (direction and/or distance from the sensors) of
each source could be estimated [31], [32].

This paper is organized as follows. The next section pro-
vides an overview of frequency-domain BSS. It includes both
the ICA-based method and the T–F masking method. Section III
presents an anechoic propagation model with the time delays
and attenuations from a source to sensors, and also cost func-
tions for grouping frequency components. Section IV proposes

Fig. 1. System structure of frequency-domain BSS. We consider two methods
for separating the mixtures, (a) ICA and (b) T–F masking. For both methods,
grouping frequency components, basis vectors or observation vectors, is the key
technique discussed in this paper.

a procedure for optimizing the cost function for permutation
alignment in ICA-based separation. Section V shows a similar
optimization procedure for classifying sensor observations in
T–F masking separation, together with the relationship with the
GCC-PHAT function. Experimental results for various setups
are summarized in Section VI. Section VII concludes this paper.

II. FREQUENCY-DOMAIN BSS

This section presents an overview of frequency-domain BSS.
Fig. 1 shows the system structure. First, the sensor observations
(1) sampled at frequency are converted into frequency-do-
main time-series signals (2) by a STFT of frame size

(3)

for all discrete frequencies
, and for time , which is now down-sampled with the

distance of the frame shift. We denote the imaginary unit as
in this paper. We typically use a window that

tapers smoothly to zero at each end, such as a Hanning window
.

Let us rewrite (2) in a vector notation

(4)

where is the vector of frequency re-
sponses from source to all sensors, and
is called an observation vector in this paper. We consider two
methods for separating the mixtures as shown in Fig. 1. They
are described in the following two subsections. In either case,
we can limit the set of frequencies where the operation is
performed by

(5)

due to the relationship of the complex conjugate

(6)
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A. ICA

The first method employs complex-valued instantaneous ICA
in each frequency bin

(7)

where is the vector of separated frequency
components and is an separation matrix. There are
many ICA algorithms known in the literature [3]–[6]. We do not
describe these ICA algorithms in detail. More importantly, here
let us explain how to estimate the mixing situation, such as (4),
from the ICA solution. We calculate a matrix whose columns
are basis vectors

(8)

in order to represent the vector by a linear combination of the
basis vectors

(9)

If has an inverse, the matrix is given simply by the inverse
. Otherwise, it is calculated as a least-mean-square

estimator [33]

which minimizes . The above procedure is effec-
tive only when there are enough sensors . Under-de-
termined ICA is still difficult to solve, and we do not
usually follow the above procedure, but directly estimate basis
vectors , as shown in, e.g., [25].

In any case, if ICA works well, we expect the separated
components to be close to the original
source components up to permutation
and scaling ambiguity. Based on this, we see that a basis vector

in (9) is close to in (4) again up to permutation
and scaling ambiguity. The use of different subscripts, and

, indicates the permutation ambiguity. They should be related
by a permutation for each
frequency bin as

(10)

so that the separated components originating from the same
source are grouped together. Section IV presents a procedure
for deciding a permutation for each frequency. After permu-
tations have been calculated, separated frequency components
and basis vectors are updated by

(11)
Next, the scaling ambiguity of ICA solution is aligned. The

exact recovery of the scaling corresponds to blind dereverbera-
tion [34], [35], which is a challenging task especially for colored

sources such as speech. A much easier way has been proposed
in [10], [11], and [36], which involves adjusting to the observa-
tion of a selected reference sensor

(12)

We see in (9) that is a part of that orig-
inates from source .

Finally, time-domain output signals are calculated with
an inverse STFT (ISTFT) to the separated frequency compo-
nents .

B. T–F Masking

The second method considered in this paper is based on T–F
masking, in which we assume the sparseness of source signals,
i.e., at most only one source makes a large contribution to each
time–frequency observation . Based on this assumption,
the mixture model (4) can simply be approximated as

(13)

where the index of the dominant source depends on each
time–frequency slot .

The method classifies observation vectors of all
time–frequency slots into classes so that the th class
consists of mixtures where the th source is the dominant
source. The notation

(14)

is used to represent a situation that an observation vector
belongs to the th class. Section V provides a procedure for clas-
sifying observation vectors . Once the classification is com-
pleted, time-domain separated signals are calculated with
an ISTFT to the following classified frequency components:

if
otherwise.

(15)

C. Relationship Between ICA-Based and T–F Masking
Methods

As mentioned in the Introduction, this paper handles the cases
of ICA and T–F masking uniformly in terms of grouping fre-
quency components. Let us discuss the relationship between the
two [1]. If the approximation (13) in T–F masking is satisfied,
the linear combination form (9) obtained by ICA is reduced to

(16)

where depends on each time–frequency slot . Thus, the
spatial information expressed in an observation vector
with the approximation (13) is the same as that of the basis
vector up to scaling ambiguity, with being dom-
inant in the time–frequency slot. Therefore, we can use similar
techniques for extracting spatial information from observation
vectors and basis vectors .



SAWADA et al.: GROUPING SEPARATED FREQUENCY COMPONENTS 1595

Fig. 2. Anechoic propagation model with the time delay � and the attenua-
tion � from source k to sensor j . The time delay � depends on the distance
d from source k to sensor j and is normalized with the distance d of a se-
lected reference sensor J 2 f1; . . . ;Mg. The attenuation � has no explicit
dependence on the distance and is normalized so that the squared sum over all
the sensors is 1.

III. PROPAGATION MODEL AND COST FUNCTIONS

A. Problem Statement

The problem of grouping frequency components considered
in this paper is stated as follows.

Classify all basis vectors , or all observation
vectors , into groups so that each group con-
sists of frequency components originating from the same
source.

Solving this problem corresponds to deciding permutations
in ICA-based separation, and to obtaining classification infor-
mation in T–F masking separation, respectively.

As discussed in the previous section, from (4) and (9),
basis vectors obtained by ICA are close to

up to permutation and scaling ambiguity.
Also from (13), an observation vector is a scaled version
of with being specific to the time–frequency slot .
Therefore, we see that modeling the vector of frequency
responses is an important issue as regards solving the grouping
problem.

B. Propagation Model With Time Delays and Attenuations

We model the propagation from a source to a sensor with the
time delay and attenuation (Fig. 2), i.e., with an anechoic model.
This model considers only direct paths from sources to sensors,
even though in reality signals are mixed in a multipath manner
(1) with reverberations. Such an anechoic assumption has been
used in many previous studies exploiting spatial information of
sources, some of which are enumerated in the Introduction. As
shown by the experimental results in Section VI, modeling only
direct paths is still effective for a real room situation as long as
the room reverberation is moderately low. With this model, we
approximate the frequency response in (2) with

(17)

where and are the time delay and attenuation from
source to sensor , respectively. In the vector form, in

(4) is approximated with

... (18)

Since we cannot distinguish the phase (or amplitude) of
and of the mixture (2) in a blind scenario, the

two types of parameters and can be considered to be
relative. Thus, without loss of generality, we normalize them by

(19)

(20)

where is the distance from source to sensor (Fig. 2),
and is the propagation velocity of the signal. Normalization
(19) makes and , i.e., the relative time
delay is zero at a selected reference sensor .
Normalization (20) makes the model vector have unit-norm

.
If we do not want to treat reference sensor as a special case,

we normalize the time delay in a more general way

(21)

where is the sensor that is pairing with sensor .
We can arbitrarily specify the function . An example is
a simple pairing with the next sensor:

if
otherwise.

(22)

In either case, the normalized time delay can now be con-
sidered as the time difference of arrival (TDOA) [30], [31] of
source between sensor and sensor or .

C. Phase and Amplitude Normalization

As mentioned in Section III-A, basis vectors and observa-
tion vectors have scaling (phase and amplitude) ambiguity. To
align the ambiguity, we apply the same kind of normalization as
discussed in the previous subsection and then obtain phase/am-
plitude normalized vectors and .

As regards phase ambiguity, if we follow (19), we apply

(23)

or

(24)

leading to or . If we prefer (21), we
apply

(25)

or

(26)
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for to construct or
. Next, the amplitude ambiguity is aligned based

on (20) by

(27)

or
(28)

leading to or .

D. Cost Functions

Given that the phase and amplitude are normalized according
to the above procedures, the task for grouping frequency com-
ponents can be formulated as minimizing a cost function.

With ICA-based separation, the task is to determine a permu-
tation for each frequency that relates the subscripts

and with (10), and to estimate parameters , in the
model (18) so that the cost function is minimized

(29)

where denotes the set of time delay pa-
rameters, and similarly for and .

With T–F masking separation, the task is to determine clas-
sification defined in (14) for each time–frequency slot,
and to estimate parameters , in the model (18) so that the
cost function is minimized

(30)
where the right-hand summation is across all the time–fre-
quency slots that belong to the th class.

The cost function or can become zero if 1) the real
mixing situation follows the assumed anechoic model (17) per-
fectly and 2) the ICA is perfectly solved or the sparseness as-
sumption (13) is satisfied in a T–F masking case. However, in
real applications, none of these conditions is perfectly satis-
fied. Thus, these cost functions end up with a positive value,
which corresponds to the variance in the mixing situation mod-
eling. Yet minimizing them provides a solution to the grouping
problem stated in Section III-A.

E. Simple Example

To make the discussion here intuitively understandable, let
us show a simple example performed with setup A. We have
three setups (A, B, and C) shown in Fig. 9, and their common
experimental configurations are summarized in Table I. Setup
A was a simple case, but the sensor spacing was
20 cm, which induced spatial aliasing for a 16-kHz sampling
rate. The example here is with ICA-based separation, and Fig. 3
shows the arguments of and after the normalization (23)
where we set as a reference sensor. The arguments of
are not shown because they are all zero. The time delays and

can be estimated from these data, as we see the two lines
with different slopes corresponding to and . However,
the following two factors complicate the time-delay estimation.

TABLE I
COMMON EXPERIMENTAL CONFIGURATIONS

Fig. 3. Arguments of ~a and ~a before permutation alignment.

The first is that different symbols (“ ” and “ ”) constitute each
of the two lines, because of the permutation ambiguity of the
ICA solutions. The second is the circular jumps of the lines at
high frequencies, which are due to phase wrapping caused by
spatial aliasing. We will explain how to group such frequency
components in the next section.

IV. PERMUTATION ALIGNMENT FOR ICA RESULTS

This section presents a procedure for minimizing the cost
function in (29) and for obtaining a permutation for each
frequency. Fig. 4 shows the flow of the procedure. We adopt
an approach that first considers only the frequency range where
spatial aliasing does not occur, and then considers the whole
range .

A. For Frequencies Without Spatial Aliasing

Let us first consider the lower frequency range

(31)

where we can guarantee that spatial aliasing does not occur. Let
be the maximum distance between the reference sensor

and any other sensor if we take (19), or between sensor pairs
of and if we take (21). Then the relative time delay is
bounded by

(32)

and therefore can be defined as

(33)

For the frequency range , appropriate permutations can
be obtained by minimizing another cost function

(34)
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Fig. 4. Flow of the permutation alignment procedure presented in Section IV, which corresponds to the grouping part in Fig. 1(a).

as proposed in our previous work [16]. The cost function is
different from (29) in that and are frequency normal-
ized versions of basis vectors and the model vector. They are
obtained by a procedure that divides their elements’ argument
by a scalar proportional to the frequency

(35)

and

...
... (36)

where is a constant scalar (its role will be discussed after-
wards). Since the original model (17) has a linear phase, the
above procedure removes the frequency dependency so that the
resultant model vector does not depend on frequency.

The advantage of introducing the frequency-normalized cost
function is that it can be minimized efficiently by the fol-
lowing clustering algorithm similar to the k-means algorithm
[37]. The algorithm iterates the following two updates until con-
vergence

(37)

(38)

where is the number of elements (cardinality) of the set.
The first update (37) optimizes the permutation for each fre-
quency with the current model . The second update (38) cal-
culates the most probable model with the current permuta-
tions.

The constant scalar in (35) and (36) affects how much
the phase part is emphasized compared to the amplitude part
in frequency-normalized vectors and . In general mi-
crophone setups, time delays provide more reliable information
than attenuations for distinguishing frequency components that
originate from different source signals. Thus, it is advantageous
to emphasize the phase part by using as large a value as pos-
sible. However, too large a value may cause phase wrapping.
We use as an appropriate value. The reason for
using this value is discussed in [16].

Fig. 5. Arguments of �a and �a after permutations are aligned only for fre-
quency range F = ff : 0 < f < 850 Hzg \ F .

Fig. 5 shows the arguments of and calculated by op-
eration (35) in the setup A experiment. For frequency range

, the clustering algorithm of iterating (37) and (38) was per-
formed to decide the permutations , and the subscripts were
updated by (11). We see two clusters whose centroids are the
two lines represented by and . For frequen-
cies higher than 850 Hz, we see that operation (35) did not work
effectively because of the effect of spatial aliasing. We need
another algorithm to minimize the cost function (29) for such
higher frequencies.

B. For Frequencies Where Spatial Aliasing may Occur

This subsection presents a procedure for deciding permuta-
tions for frequencies where spatial aliasing may occur. Thus
far, the frequency-normalized model has been calculated by
(38), and it contains model parameters , as shown in (36).
They can be extracted from the elements of as

(39)

A simple way of deciding permutations for higher frequencies
is to use these extracted parameters for the vector form in
(18) and calculate a permutation based on the original cost
function (29) with

(40)

However, and estimated only with frequencies in
may not be very accurate. Fig. 6 shows and
after the permutations had been calculated by (40) using the
model parameters extracted by (39). We see some estimation
error for and , as the data (shown in marks “ ” and “ ”)
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Fig. 6. Arguments of ~a and ~a after permutation alignment using model pa-
rameters estimated with low frequency range F data. Because � and � are
not precisely estimated, there are some permutation errors at high frequencies.

are not lined up along the model line (shown as dashed lines) at
high frequencies.

A better way is to re-estimate parameters and by
minimizing the original cost function in (29), where the
frequency range is not limited to . In our earlier work [2],
we used a gradient descent approach to refine these parameters,
where we needed to carefully select a step size parameter that
guaranteed a stable convergence. In this paper, we adopt the fol-
lowing direct approach instead. With a simple mathematical ma-
nipulation (see the appendix), the cost function becomes

(41)

where takes only the real parts of a complex number. Thus,
the optimum time delay for minimizing the cost function
with the current permutations is given by

(42)

and the optimum attenuation with the current permutations
and the delay parameter is given by

(43)

This is because the gradient of (41) with respect to is

and setting the gradient zero gives the (43).
We can iteratively update by (40) and , by (42)

and (43) to obtain better estimations of the model parameters
and consequently better permutations. Note that the structure
that iterates (40), (42) and (43) has the same structure as (37)
and (38). Fig. 7 shows and after and ,

were refined by (40), (42), and (43). We see that and
were precisely estimated and the permutations were aligned

correctly even for high frequencies.

Fig. 7. Arguments of ~a and ~a after permutation alignment using model
parameters re-estimated with data from the whole frequency range F . Now �

and � are precisely estimated, and permutations are aligned correctly.

V. CLASSIFICATION OF OBSERVATIONS FOR T–F MASKING

This section presents a procedure for minimizing the cost
function in (30) and for obtaining a classification
of observation vectors for the T–F masking separation
described in Section II-B.

A. Procedure

The structure of the procedure is shown in Fig. 8. It is almost
the same as that of the permutation alignment (Fig. 4) presented
in the last section. The modification made for T–F masking sep-
aration involves replacing , , , and “permutation op-
timization” with , , , and “classification optimization,”
respectively.

Let us assume here that observation vectors have been con-
verted into by the phase and amplitude normalization pre-
sented in Section III-C. For frequency range where spatial
aliasing does not occur, frequency normalization [22] is applied
to the elements of

(44)
With the frequency normalization, the cost function (30) is con-
verted into

(45)

where , and the right-hand summation with
is limited to the frequency range given by (33).

The cost function can be minimized efficiently by iterating
the following two updates until convergence

(46)

(47)

where is the number of time–frequency slots that sat-
isfy .

For higher frequencies where spatial aliasing may occur,
model parameters and are first extracted from as
shown in (39), and then substituted into the vector form
in (18). Then, the classification of the observation vectors can
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Fig. 8. Flow of the classification procedure presented in Section V, which corresponds to the grouping part in Fig. 1(b).

be decided by

(48)

As with (42) and (43) for permutation alignment in the pre-
vious section, the parameters are better estimated according to
the original cost function in (30) by

(49)

(50)

where the summation with is not limited to but
covers the whole range . We can iteratively update by
(48) and , by (49) and (50) to obtain better estimations
of the model parameters and consequently better classification.

B. Relationship to GCC-PHAT

This subsection discusses the relationship between (49) and
the GCC-PHAT function [23], [28], [29]. Let us assume that
only the first source is active in an STFT frame centered at
time . The TDOA of the source between sensor and

can be estimated with the GCC-PHAT function as

(51)

where the summation is over all discrete frequencies.
If the same assumption holds for T–F masking separation, all

the observation vectors at time frame are classified into the first
one, i.e., , . Then, the delay parameter estimation
by (49) using only the time frame is reduced to

(52)

where can be expressed in

if we follow the phase and amplitude normalization (24) and
(28). Time delay can be considered as the TDOA of source

between sensors and .
We see that (51) and (52) are very similar. The summation in

(51) and (52) has the same effect because of the conjugate re-

lationship (6). Thus, the only difference is in the denominator
part, or , but this difference has very little ef-
fect in the argmax operation if we can approximate

with the same constant for all frequencies. In [23],
T–F masking separation and time delay estimation with GCC-
PHAT were discussed, but there was no mathematical statement
relating these two.

Based on this observation, we recognize that iterative up-
dates with (48) and (49) perform time delay estimation with the
GCC-PHAT function by selecting frequency components of the
source. The estimations are improved by a better classifica-
tion of the frequency components, and conversely the
classification is also improved by better time delay esti-
mations .

VI. EXPERIMENTS

A. Experimental Setups and Evaluation Measure

To verify the effectiveness of the proposed formulation and
procedure, we conducted experiments with the three setups A,
B, and C shown in Fig. 9. They differ as regards number of
sources and sensors and sensor spacing. The configurations
common to all setups are summarized in Table I. We tested the
BSS system mainly with a low reverberation time (130 ms) so
that the system can exploit spatial information of the sources
accurately when grouping frequency components, but we also
tested the system in more reverberant conditions to observe
how the separation performance degrades as the reverberation
time increases (reported in Section VI-E).

The separation performance was evaluated in terms of
signal-to-interference ratio (SIR) improvement. The improve-
ment was calculated by for each
output , and we took the average over all output .
These two types of SIRs are defined by

dB

dB

where is the index of a selected reference
sensor, and is the component of that appears at output

, i.e., .
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Fig. 9. Three experimental setups. Setup A: two sources and two sensors with large spacing. Setup B: three sources and three sensors with large spacing. Setup
C: three sources and four sensors with small spacing. All the microphones were omnidirectional.

B. Main Experiments

Fig. 10 summarizes the experimental results with a reverbera-
tion time of 130 ms. We performed experiments with eight com-
binations of 3-s speeches, for pairs consisting of each method
(ICA or T–F masking) and setup (A, B, or C). As regards phase
normalization, a reference sensor was selected (19) for setups
A and B, and pairing with the next sensor (21) was employed
in setup C. To observe the effect of the multistage procedures
presented in Sections IV and V, we measured the SIR improve-
ments at three different stages and for two special options.

Stage I) Grouping frequency components only at low-fre-
quency range where spatial aliasing does not
occur, by (37) and (38) for permutations , or
by (46) and (47) for classification . At the
remaining frequencies, the permutations or clas-
sification were random.

Stage II) After Stage I, grouping frequency components at
the remaining high frequencies by (40) or (48)
with the model parameters , extracted by
(39), which were not so accurate because they
were estimated only with the data from the low-
frequency range .

Stage III) After Stage II, re-estimating model parameters
, by (42), (43) with , or by (49) and

(50) with . This re-estimation was interleaved
with grouping frequency components at the high
frequencies by (40) or (48).

Only III) Only the core part of Stage III was applied.
Grouping frequency components by interleaving
(40), (42), and (43) for permutations , or (48),
(49), and (50) for classification , starting
from random initial permutations or classifica-
tion.

Optimal) Optimal permutations or classification
was calculated using the information

on source signals. This is not a practical solu-
tion, but is to enable us to see the upper limit of
the separation performance.

SIR improvements became better as the stage proceeded from
I to III. This is noticeable in setups A and B where the sensor
spacing was large and the frequency range without spatial
aliasing was very small. On the other hand, in setup C, the dif-
ference was not so large because the sensor spacing was small
and the range occupied more than half the whole range .

Even if only Stage III was employed with random initial per-
mutations or classification, the results were sometimes good. In
some cases, however, especially for setup B with T–F masking,
the results were not good. These results show that the classi-
fication problem for T–F masking has a much larger possible
solution space than the permutation problem for ICA, and it is
easy to get stuck in a local minimum of the cost function .
Therefore, the multistage procedure has an advantage in that it
is not likely to become stuck in local minima.

Table II shows the total computational time for the BSS pro-
cedure, and also those of the and subcomponents
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Fig. 10. SIR improvements at different stages. The first and second rows correspond to ICA-based separation and T–F masking separation, respectively. The
first, second, and third columns correspond to setups A, B, and C, respectively. Each dotted line shows an individual case, and a solid line with squares shows the
average of the eight individual cases.

TABLE II
COMPUTATIONAL TIME

depicted in Fig. 1. They are for 3-s source signals, and are av-
eraged over the eight different source combinations. The BSS
program was coded in Matlab and run on an AMD 2.4-GHz
Athlon 64 processor. The computational time of the
procedure was not very large and was smaller than that of .
Table II also shows the average number of iterations to con-
verge for the procedure, (40), (42), and (43) with ICA,
or (48), (49), and (50) with T–F masking. The T–F masking
grouping procedure requires more iterations than that of ICA
because of the larger solution space, but it converges within a
reasonable number of iterations.

C. Comparison With Null Beamforming

Let us compare the separation capability of the proposed
methods (ICA and T–F masking) with that of null beam-
forming, which is a conventional source separation method that
similarly exploits the spatial information of sources. In null
beamforming, filter coefficients are designed by assuming the
anechoic propagation model (17). In this sense, all these three
methods rely on delay and attenuation parameters.

TABLE III
SIR IMPROVEMENTS (dB) WITH DIFFERENT SEPARATION METHODS

We designed the null beamformer in the frequency domain.
The separation matrix in each frequency bin was given
by the inverse (or Moore–Penrose pseudoinverse if ) of
the assumed mixing matrix

...
. . .

...

where is the propagation model defined in (17). The
delay and attenuation parameters were accurately es-
timated in the experiment, from the individual source contribu-
tions on the microphones for each source.

Table III reports SIR improvements with these methods for
four different setups. An anechoic setup was added to the ex-
isting three setups (A, B, and C) to contrast the characteristics of
these three methods. In the anechoic setup, the positions of loud-
speakers and microphones were the same as those of setup A.

We observe the following from the table. Null beamforming
performs the best in the anechoic setup, but worse than the
other two methods in the three real-room setups. With null
beamforming, propagation model parameters are used for
designing the filter coefficients in the separation system. Thus,
even a small discrepancy between the propagation model and



1602 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

Fig. 11. SIR improvements with ICA-based BSS for setup A for various re-
verberation times (RT = 130, 200, 270, 320, 380, and 450 ms) and two
different distances (60 and 120 cm) from the sources to the microphones. Each
square shows the average SIR improvement of the eight different combinations
of speech sources.

a real room situation directly affects the separation. With ICA
or T–F masking, on the other hand, the propagation model is
used only for grouping separated frequency components. The
discrepancy between the propagation model and a real room
situation is reflected in the cost function or as discussed
in Section III-D. Therefore, these methods are robust to such a
discrepancy if it is not very severe.

D. Comparison of ICA and T–F Masking

In terms of grouping frequency components, the ICA-based
and T–F masking methods have a lot in common as discussed
above. However, they are of course different in terms of the
whole BSS procedure. Here, we compare these two methods.

With ICA, separated frequency components are generated by
the ICA formula (7). The separation matrix is designed
for each frequency so that it adapts to a mixing situation (ane-
choic or real reverberant). This is why ICA performs well in all
the setups in Table III and also in Fig. 10.

In contrast, with T–F masking, separated frequency compo-
nents are simply frequency-domain sensor observations calcu-
lated by an STFT (3). How well these components are separated
depends on how well the sparseness assumption (13) holds for
the original source signals. In general, a speech signal follows
the sparseness assumption to a certain degree, but it does less
accurately than the anechoic situation follows the propagation
model (17). This is why the SIR improvement of T–F masking
for the anechoic setup saturated compared with the other two in
Table III. It should also be noted that violation of the sparseness
assumption leads to an undesirable musical noise effect.

In summary, if the number of sensors is sufficient for the
number of sources as shown in Table III, the ICA-based method
performs better than the T–F masking method. However, a T–F
masking approach has a separation capability for an under-de-
termined case where the number of sensors is insufficient.

E. Experiments in More Reverberant Conditions

We also performed experiments in more reverberant condi-
tions. The reverberation time was controlled by changing the
area of cushioned wall in the room. We considered five addi-
tional different reverberation times for setup A, namely 200,

Fig. 12. Arguments of ~a and ~a after permutations were aligned at Stage
III. The room reverberation time was 380 ms, and the distance from the sources
to the microphones was 120 cm, which made the situation very different from
the assumed anechoic model. Consequently, the samples of the arguments were
widely scattered around the estimated model parameters. However, the model
parameters were reasonably estimated so the source directions can be approxi-
mately estimated together with the information about the microphone array ge-
ometry.

270, 320, 380, and 450 ms. We also considered another distance
of 60 cm from the sources to the microphones. As regards the
experiments reported here, let us focus on ICA-based separation
for simplicity.

Fig. 11 shows SIR improvements at Stage III and also with
optimal permutations. Reverberation affects the ICA solutions
as well as the permutation alignment. Even with optimal per-
mutations, the ICA separation performance degrades as the
reverberation time increases. The difference between “Optimal”
and “Stage III” SIR improvements indicates the performance
degradation caused by permutation misalignment. In the shorter
distance case (60 cm), the degree of degradation was uniformly
small for various reverberation times. This is because the
contribution of the direct path from a source to a microphone
is dominant compared with those of the reverberations, and
thus the situation is well approximated with the anechoic
propagation model. However, with the original distance (120
cm), the degradation became large as the reverberation time
became long. These results show the applicability/limitation
of the proposed method for permutation alignment in more
reverberant conditions as a case study.

Fig. 12 shows the arguments of and after the permu-
tations were aligned at Stage III, in an experiment with a rever-
beration time of 380 ms and a distance of 120 cm. Compared
with Fig. 7 (where the reverberation time was 130 ms), we see
that the basis vector elements were widely scattered around the
estimated anechoic model due to the long reverberation time,
and thus permutation misalignments occurred more frequently.
However, the model parameters were reasonably estimated, cap-
turing the center of the scattered samples to minimize the cost
function (29).

VII. CONCLUSION

We proposed a procedure for grouping frequency compo-
nents, which are basis vectors in ICA-based separation,
or observation vectors in T–F masking separation. The
grouping result is expressed in permutations for ICA-based
separation, or in classification information for T–F
masking separation. The grouping is decided based on the
estimated parameters of time delays and attenuations
from source to sensors. The proposed procedure interleaves the
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grouping of frequency components and the estimation of the
parameters, with the aim of achieving better results for both.
We adopt a multistage approach to attain a fast and robust
convergence to a good solution. Experimental results show
the validity of the procedure, especially when spatial aliasing
occurs due to wide sensor spacing or a high sampling rate.
The applicability/limitation of the proposed method under
reverberant conditions is also demonstrated experimentally.

The primary objective of this paper was blind source sepa-
ration of acoustic sources. However, with the proposed scheme,
the time delays and attenuations from sources to sensors are also
estimated with a function similar to that of GCC-PHAT. If we
have information on the sensor array geometry, we can also es-
timate the locations of multiple sources. This point should be
interesting also to researchers working in the field of source lo-
calization.

APPENDIX

A. Calculating and Simplifying the Cost Functions

The squared distance that appears in (29) can be
transformed into

where

from the assumptions, and

Thus, the minimization of the squared distance
is equivalent to the maximization of the real part of the inner
product , whose calculation is less demanding in terms of
computational complexity. We follow this idea in calculating
the argmin operators in (37), (40), (46), and (48).

The mathematical manipulations conducted for obtaining
(41) were the above equations and
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