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Abstract. Blind source separation (BSS) for convolutive mixtures can
be performed efficiently in the frequency domain, where independent
component analysis (ICA) is applied separately in each frequency bin.
To solve the permutation problem of frequency-domain BSS robustly, in-
formation regarding the number of sources is very important. This paper
presents a method for estimating the number of sources from convolutive
mixtures of sources. The new method estimates the power of each source
or noise component by using ICA and a scaling technique to distinguish
sources and noises. Also, a reverberant component can be identified by
calculating the correlation of component envelopes. Experimental results
for up to three sources show that the proposed method worked well in a
reverberant condition whose reverberation time was 200 ms.

1 Introduction

Blind source separation (BSS) [1] is a technique for estimating original source
signals solely from their mixtures at sensors. In some applications, such as audio
acoustics, signals are mixed in a convolutive manner with reverberations. This
makes the BSS problem more difficult to solve than an instantaneous mixture
problem. Let us formulate the convolutive BSS problem. Suppose that N source
signals sj(t) are mixed and observed at M sensors

() = Ty Xy hie(Dsn(t — 1) +ns(2), (1)

where hj (1) represents the impulse response from source k to sensor j and n;(t)
is an additive Gaussian noise for each sensor. The goal is to obtain N output
signals y;(t), each of which is a filtered version of a source si(t). If we have
enough sensors (M > N), a set of FIR filters w;;(!) of length L is typically used
to produce separated signals

vi(t) = 9L, Sy wig (D (1) (2)

at the outputs, and independent component analysis (ICA) (2] is generally used
to obtain the FIR filters w;;(l). If the number of sensors is insufficient (M < N),
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Fig. 1. Flow of frequency-domain BSS.

we need to rely on the sparseness of source signals, and approaches for separation
become totally different [3]. Therefore, this paper focuses on cases where we have
enough sensors (M > N).

There are two major approaches to the convolutive BSS problem. The first
is time-domain BSS, where ICA is applied directly to the convolutive mixture
model [4, 5]. The other approach is frequency-domain BSS, where complex-valued
ICA for instantaneous mixtures is applied separately in each frequency bin [6-
10]. The merit of frequency-domain BSS is that ICA for instantaneous mixtures
is simpler and computationally more efficient than ICA for convolutive mixtures.
We have implemented a frequency-domain BSS system that can separate three
sources in real-time [10]. The price we must pay for this computational efficiency
includes several additional problems that need to be solved for integrating the
ICA solutions obtained separately in each frequency bin. The permutation prob-
lem is the best known. The permutation ambiguity of ICA should be aligned so
that a separated signal in the time-domain contains the frequency components
of the same source signal. We have proposed a method for solving the permu-
tation problem (8], which performs well even if the number of sources is large
[9, 10]. However, this method requires knowledge of the number of sources, and
we assumed that the number was known apriori in these papers.

In this paper, we propose a method for estimating the number of sources
N in the context of frequency-domain BSS. It is well known that the number
of dominant eigenvalues of the spatial correlation matrix corresponds to the
number of sources [11, 12]. However, it is difficult to decide whether an eigenvalue
is dominant or not for sensor observations mixed in a reverberant condition as
shown in Sec. 3. This difficulty has already been pointed out in [12], where
they propose the use of support vector machines (SVM) to classify eigenvalue
distributions and decide the number of sources. However, the SVM needs to be
trained beforehand and experimental results were provided only for 1- or 2-source
cases. Our proposed method is based on an analysis of ICA solutions obtained
in the frequency domain as shown in Sec. 4. Experimental results for up to three
sources show that the method worked well in a real reverberant condition.

2 Frequency-Domain BSS

This section describes frequency-domain BSS whose flow is shown in Fig. 1.
First, time-domain signals z;(t) at sensors are converted into frequency-domain
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time-series signals X;(f,t) by short-time Fourier transform (STFT), where ¢ is
now down-sampled with the distance of the frame shift. Then, the number of
sources N should be estimated from X(f,t) = [X1(f,t),...,Xnm(f,t)]T. This
part is the main topic of this paper, and will be discussed in Secs. 3 and 4.

After estimating the number of sources N, the dimension M of sensor ob-
servations X(f,t) is reduced to N typically by principal component analysis
(PCA), Z(f,t) = V(f)X(f,t), where V(f) is an N x M matrix whose row
vectors generate N principal components [13]. Even if N = M, PCA is use-
ful as preprocessing. Then, complex-valued ICA Y(f,t) = B(f)Z(f,t) is ap-
plied, where B(f) is an N dimensional square matrix. Through these oper-
ations, the sensor observations X(f,t) are separated into independent com-
ponents Y(f,t) = [Yi(£,t),...,Yn(f,t)]T by Y(f,t) = W(f)X(f,t), where
W(f) = B(f)V(f). Note that W(f) is invertible if V(f) is full rank and B(f)
is made unitary (by e.g. FastICA [2]).

The ICA solution W(f) in each frequency bin has permutation and scaling
ambiguity: even if we permute the rows of W (f) or multiply a row by a constant,
it is still an ICA solution. In matrix notation, A(f)P(f)W(f) is also an ICA
solution for any permutation P(f) and diagonal A(f) matrix. The permutation
ambiguity P(f) should be solved so that Y;(f,t) at all frequencies corresponds to
the same source s;(t). We use the method described in [8]. The scaling ambiguity
A(f) can be solved by making Y;(f,t) as close to a part of the sensor observation
X(f,t) as possible. The minimal distortion principle (MDP) [4] makes y;(t) as
close to 3=, hsi(l)si(t — 1), a part of z;(t), as possible. In the frequency domain,
it is realized by A(f) = diaglW~=2(f)] [7]. If N < M, the Moore-Penrose pseu-
doinverse W*(f) is used instead of W~1(f). Also, the scaling (3) that will be
discussed in Sec. 4 can be used.

The aligned matrices W(f) «— A(f)P(f)W(f) are the frequency responses
of separation filters w(l). However, we need to be concerned about the circularity
effect of discrete frequency representation. We perform spectral smoothing [14]
for [W(f)]i; to mitigate the circularity effect. Finally, time-domain filters w;; (1)
are obtained by applying inverse DFT to the smoothed elements [W(f)];;.

3 Conventional Eigenvalue-Based Method

This section describes a conventional eigenvalue-based method for estimating
the number of sources in each frequency bin [11]. It performs eigenvalue decom-
position for the spatial correlation matrix R(f) = (X(f,t)X(f,t)#); of sensor
observations, where (-); denotes the averaging operator and -# denotes the con-
jugate transpose. Let A\; > -+ > Ay > -+ > Ay be the sorted eigenvalues of
R(f). If there is no reverberation, the number of dominant eigenvalues is equal
to the number of sources N, and the remaining M — N smallest eigenvalues are
the same as the noise power: Ay41 = -+ = Ay = o2. However, there are two
problems in a real reverberant condition.

Reverberation. The number of dominant eigenvalues might be more than the
number of source signals, if the reverberation of a mixing system is long and
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Fig. 2. Component powers estimated by the eigenvalue-based method.

strong. This is because the reverberation of a mixing system, i.e. the non-zero
part of h;x(l), is usually longer than the STFT frame, and the reverberation
component could be counted as a signal.

Unrecovered power. The number of dominant eigenvalues might be less than
the number of source signals, if some of the column vectors of the mixing
matrix are similar. In this case, the first few eigenvalues represent almost all
powers. A typical situation can be seen in low frequencies, where the phase
differences among sensors are very small.

Because of these two problems, the eigenvalue-based method does not work well
in a real reverberant condition. Figure 2 shows component powers estimated by
the eigenvalue-based method in an environment whose conditions are summa-
rized in Fig. 3. The left hand plot shows a one-source case. Because of reverbera-
tions, the normalized power of the second principal components were around —20
dB. To distinguish the source and noises (including reverberations), a threshold
of around —15 dB is good for the one-source case. However, if such a threshold
is used for the three-source case shown in the right hand plot, the number of
sources is estimated at two in most frequency bins. Therefore, it is hard to find
a threshold that works well for both cases.

4 Proposed ICA-Based Method

In this section, we propose a new method for estimating the number of sources
that solves the two problems mentioned above.

To solve the problem of unrecovered power, the proposed method recovers the
power of each signal measured at sensors by using ICA and a scaling technique.
It first applies ICA for X(f,t) without performing dimension reduction, i.e.
assuming the number of sources N is equal to the number of sensors M. Because
of the scaling ambiguity of ICA, the power of each component of the ICA solution
Y(f,t) = W(f)X(f,t) is different from the power of each source or noise. If the
real number of sources is less than M, M — N noise components are generally
enhanced.

To recover the power of each component measured at sensors, we use a scaling

A(f) = sqrt(diag[W=H ()W (£))), (3)
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for ICA solution Y (f,t) = A(f)W(f)X(f,t). Note again that W(f) is invert-
ible if the smallest eigenvalue of the spatial correlation matrix R(f) is not zero.
We call (3) power-recovery scaling since it recovers the power of the sensor ob-
servations as follows. Firstly, the total power of sensor observations is recovered
at the outputs:

Y (A0 = 1X(£,1)11% 4)
if the components of Y (£,t) are uncorrelated. Moreover, if ICA is properly solved
and Y;’s are made mutually independent, the power of each source measured at
sensors is recovered at each output:

[Yi(£,6)* = | Hug) () Sne (£, )17, (5)
where II is a permutation, Sy is the k-th source and Hy is the mixing vector
of Sk. This equation (5) can be seen as decomposition of equation (4). We have
proved both equations. However, the proofs are omitted here for space limit.

In this way, the power of each component Y;(f,t) of the ICA solution
Y(f,t) = A(f)W(f)X(f,t) approaches the real power of each source or noise
measured at sensors Hyy(;)(f)Sn(;)(f,t). Therefore, the power

of = (Y (f,)): (6)
can be used as a criterion for distinguishing sources and noises (including rever-
berations). Although the MDP explained in Sec. 2 can also be used for power
estimation, the power recovered by the MDP contains only the power of a se-
lected sensor z;(t), and is sensitive to the sensor selection. The power recovered
by the power-recovery scaling (3) contains the power of all sensors, and is there-
fore more robust for power estimation.

The problem of reverberation discussed in Sec. 3 still needs to be solved.
We observed that the envelope of a reverberant component has a strong correla-

tion with the envelope of a source component. The correlation of two envelopes
[Yaa(f,t)] and [Yia(f, 1), 11,42 € {1,..., M}, is defined as

(v,-l(t) via(t)):

NN where v;(t) = [Y;(£,£)] = (|Yi(f,t)])e. U]
When Yil( f, ) is a source component and Y;3(f,t) is not a source component
but includes the reverberation of source i1, the correlation of |Y;;(f, t—At)| and
|Yia(f,t)| with an appropriate time delay — At tends to be large. Therefore, the
correlation can be used as a measure to distinguish sources and reverberations.

The overall procedure of the proposed method is as follows.

—

. Calculate independent components Y( f,t) by using ICA and scaling (3).

2. If the normalized power o2/ Ek_l o2 of i-th component is smaller than a
threshold, e.g. 0.01 (—20 dB) con51der it to be a noise component.

3. If the normalized power o2/ Ek 0% is smaller than a threshold, e.g. 0.2,
and one of the correlatlons (7) among other components is larger than a
threshold, e.g. 0.5, consider it to be a reverberant component.

4. Otherwise, consider the i-th component to be a signal.

These thresholds can be determined beforehand by the power levels of back-
ground noise and reverberations.
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Table 1. BSS results obtained with different estimation methods: the conventional
eigenvalue-based method (Eig.) and the proposed ICA-based method (Prop.).

#sources (real) 1 (c) 2 (a,c) 3 (a,b,c)

#sources (est.) || 2 (Eig.) |1 (Prop.)| 2 (Both) || 2 (Eig.) 3 (Prop.)
SIR (dB) [e) 00 oof[17.1 17120 -1.2|136 154 133
SDR (dB) 10.1 —44 |l 13.3 142) 0.7 —-35| 94 10.5 10.2

5 Experimental Results

We performed experiments to estimate the number of sources from sensor ob-
servations and to separate them into source signals. Sensor observations were
generated by convolving source signals with impulse responses and then adding
background noise. The impulse responses and the background noise were mea-
sured in the conditions summarized in Fig. 3. We tested cases of one, two and
three sources, while the number of sensors was three for all cases. Figure 4 shows
the numbers of sources estimated by using the conventional eigenvalue-based
method and the proposed ICA-based method. The vertical axis shows the num-
ber of frequency bins for each estimated number of sources. The STFT frame
size was 512, and thus the number of total frequency bins to cover 0-4000 Hz
was 257. By taking the maximum vote, the ICA-based method successfully esti-
mated the number of sources in all cases, whereas the eigenvalue-based method
estimated the number of sources at 2 in all cases.

Table 1 shows the BSS results obtained with these estimations for the number
of sources. The results were measured in terms of the signal-to-interference ratio
(SIR) and signal-to-distortion ratio (SDR) of each output. To calculate the SIR
of y;(t), it is decomposed as y;(t) = tar;(t) + int;(t), where tar;(t) is a filtered
component of a target signal sp;)(t) and int;(t) is the remaining interference
component. The SIR is the power ratio of tar;(t) and int;(t). The mapping II
was selected to maximize the SIR. To calculate the SDR of y;(t), the filtered
component of the target signal is further decomposed as tar;(t) = «; - ref;(¢) +
e;(t), where ref;(t) is a reference signal and «; is a scalar that minimizes the error
power of e;(t). We used ref;(t) = >, his(1)ss(t — ) following the MDP. The SDR,
is the power ratio of «; - ref;(t) and e;(¢). The BSS performance was degraded if
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Fig. 6. Identifying reverberant components when there is one source.

the number of sources was incorrectly estimated. In the one-source case with the
eigenvalue-based method, the number of sources was overestimated. Thus the
source was decomposed into two outputs, and the SDRs were poor. In the three-
source case, again with the eigenvalue-based method, the number of sources was
underestimated. In this case, the output signals were still mixed, and thus the
SIRs as well as SDRs were poor.

Figure 5 shows how well the powers of sources were recovered by ICA and
the proposed scaling technique. The left hand plot shows the normalized powers
of the three sources measured at sensors, and the right hand plot shows those
estimated by ICA and the scaling formula (3). The powers were sufficiently well
recovered to estimate the number of sources. Compared with the result obtained
with the eigenvalue-based method (the right hand plot in Fig. 2), the advantage
of the proposed method becomes clear.

Figure 6 shows how the proposed method copes with the reverberation prob-
lem. This case had only one source. The left hand plot shows the normalized
power of the first and second largest components of the scaled ICA outputs.
It was hard to decide solely from these normalized powers whether the second
component was a signal or a noise because the powers of the second components
were not sufficiently small in many frequency bins. However, by calculating the
correlation of the envelopes between the first and second components, it became
clear that the second component was a reverberation, i.e. a noise. The right
hand plot shows the correlations, which were large enough (around 0.8) in many
frequency bins.
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Conclusion

We have proposed a method for estimating the number of sources in each fre-
quency bin. Our method provides a solution for the two problems with the
conventional eigenvalue-based method discussed in Sec. 3, and provides a good
estimation even in a reverberant condition of T = 200 ms. With the proposed
method, frequency-domain BSS can be practically applied without apriori knowl-
edge of the number of sources.
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