
2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY

BLIND SOURCE SEPARATION OF 3-D LOCATED MANY SPEECH SIGNALS

Ryo Mukai Hiroshi Sawada Shoko Araki Shoji Makino

NTT Communication Science Laboratories, NTT Corporation

2–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–0237, Japan

ryo@cslab.kecl.ntt.co.jp

http://www.kecl.ntt.co.jp/icl/signal/mukai/

ABSTRACT

This paper presents a prototype system for Blind Source

Separation (BSS) of many speech signals and describes the

techniques used in the system. Our system uses 8 micro-

phones located at the vertexes of a 4cm×4cm×4cm cube

and has the ability to separate signals distributed in three-

dimensional space. The mixed signals observed by the mi-

crophone array are processed by Independent Component

Analysis (ICA) in the frequency domain and separated into

a given number of signals (up to 8). We carried out exper-

iments in an ordinary office and obtained more than 20 dB

of SIR improvement.

1. INTRODUCTION

The Blind Source Separation (BSS) [1] of audio signals has
a wide range of applications. In most realistic applications,
the number of source signals is large, and the signals are
mixed in a convolutive manner with reverberations. Inde-
pendent component analysis (ICA) [2] is one of the main
statistical methods used for BSS. It is theoretically possible
to solve the BSS problem with a large number of sources by
ICA, if we assume that the number of sensors is equal to or
greater than the number of source signals. However, there
are many practical difficulties. Although many studies have
been undertaken on BSS in a reverberant environment [3],
most of them have assumed two source signals, and only a
few studies have dealt with more than two source signals.

In this paper, we present techniques for the BSS of many
speech signals distributed in three-dimensional space and a
prototype system that we have developed. In our previous
work [4], we described the separation of six source signals
consisting of simulated data, i.e. signals made by convolv-
ing impulse responses. In contrast, this prototype system
performs an on-the-spot BSS of live recorded signals. This
paper is an extended version of our previous work [5].

2. FREQUENCY DOMAIN BLIND SOURCE
SEPARATION

There are two major approaches to solving the convolutive
BSS problem. The first is the time domain approach, where
ICA is applied directly to the convolutive mixture model
[6, 7, 8]. The time domain approach incurs considerable
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Figure 1: Flow of frequency domain BSS

computational cost, and it is difficult to obtain a solution in
a practical time when the number of source signals is large.

The other approach is frequency domain BSS, where
ICA is applied to multiple instantaneous mixtures in the fre-
quency domain [9, 10, 11]. This approach takes much less
computation time than time domain BSS.

2.1. ICA in frequency domain

When N source signals are s1(t), ..., sN (t) and the signals
observed by M sensors are x1(t), ..., xM (t), the mixing
model can be described by

xj(t) =
∑N

i=1

∑
l hji(l)si(t − l), (1)

where hji(l) is the impulse response from source i to sensor
j. The separation system typically consists of a set of FIR
filters wkj(l) of length L designed to produce N separated
signals y1(t), ..., yN (t), and it is described as:

yk(t) =
∑M

j=1

∑L−1
l=0 wkj(l)xj(t − l). (2)

Figure 1 shows the flow of BSS in the frequency do-
main. Each convolutive mixture in the time domain is con-
verted into multiple instantaneous mixtures in the frequency
domain. By using a short-time discrete Fourier transform
(DFT), the mixing model is approximated as:

x(f, m) = H(f)s(f, m), (3)

where f denotes the frequency, m is the frame index,
s(f, m) = [s1(f, m), ..., sN (f, m)]T is the vector of
the source signals in the frequency bin f , x(f, m) =
[x1(f, m), ..., xM (f, m)]T is the vector of the observed sig-
nals, and H(f) is a matrix consisting of the frequency re-
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sponses Hji(f) from source i to sensor j. The separation
process can be formulated in each frequency bin as:

y(f, m) = W(f)x(f, m), (4)

where y(f, m) = [y1(f, m), ..., yN (f, m)]T is the vector of
the separated signals, and W(f) represents the separation
matrix. Therefore, we can apply an ordinary (instantaneous)
ICA algorithm to each frequency bin and calculate the sep-
aration matrices. W(f) is determined so that the elements
of y(f, m) become mutually independent for each f .

The ICA solution suffers from scaling and permutation
ambiguities. This is because that if W(f) is a solution, then
D(f)P(f)W(f) is also a solution, where D(f) is a diago-
nal complex valued scaling matrix, and P(f) is an arbitrary
permutation matrix. There is a simple and reasonable solu-
tion for the scaling problem:

D(f) = diag{[P(f)W(f)]−1}, (5)

which is obtained by the minimal distortion principle
(MDP) [12] or the projection back method [13], and we
can use it. On the other hand, the permutation problem is
complicated, especially when the number of source signals
is large. Before constructing a separation filter in the time
domain, we have to align the permutation so that each chan-
nel contains frequency components from one source signal.
The time domain filters are obtained by the inverse discrete
Fourier transform of frequency domain separation matrices.

2.2. DOA estimation using ICA solution

The frequency response matrix H(f) is closely related to
the locations of the sources and sensors. If a separation ma-
trix W(f) is calculated successfully and it extracts source
signals with a scaling ambiguity, there is a diagonal ma-
trix D(f), and D(f)W(f)H(f) = I holds. Because of
the scaling ambiguity, we cannot obtain H(f) simply from

the ICA solution W(f). However, the ratio of elements in
the same column Hji(f)/Hj′i(f) is invariable in relation to
D(f), and is given by

Hji(f)

Hj′i(f)
=

[W−1(f)D−1(f)]ji

[W−1(f)D−1(f)]j′i
=

[W−1(f)]ji

[W−1(f)]j′i
, (6)

where [·]ji denotes the ji-th element of the matrix.

We can estimate the DOA of a source signal by using
this invariant [4]. With a far-field model, a frequency re-
sponse is formulated as:

Hji(f) = e2πfc−1
a

T
i pj , (7)

where c is the wave propagation speed, ai is a unit vector
that points to the direction of source i (absolute DOA), and
pj represents the location of sensor j. According to this
model, we have

Hji(f)/Hj′i(f) = e2πfc−1
a

T
i (pj−pj′ ) (8)

= e2πfc−1‖pj−pj′‖ cos θi,jj′ (f), (9)

where θi,jj′ (f) is the direction of source i relative to the
sensor pair j and j ′ (relative DOA). Figure 2 shows the re-
lation of the absolute DOA and the relative DOA. By using
the argument of (9) and (6), we can estimate:

θ̂i,jj′ (f) = arccos
arg(Hji/Hj′i)

2πfc−1‖(pj − pj′ )‖

= arccos
arg([W−1]ji/[W−1]j′i)

2πfc−1‖(pj − pj′ )‖
. (10)

θ̂i,jj′ (f) is estimated for each frequency bin f , but we omit
the argument f to simplify the notation in the following de-
scription.

The DOA estimation involves certain ambiguities.
When we use only one pair of sensors or a linear array, the

estimated θ̂i,jj′ determines a cone rather than a direction.
This ambiguity can be solved by using multiple sensor pairs
(Fig. 3). If we use sensor pairs that have different axis direc-
tions, we can estimate cones with various vertex angles for

one source direction. If the relative DOA θ̂i,jj′ is estimated
without any error, the absolute DOA ai satisfies:

(pj − pj′ )
T ai

‖pj − pj′‖
= cos θ̂i,jj′ . (11)

When we use L sensor pairs whose indexes are
j(l)j′(l)(1 ≤ l ≤ L), ai is given by the solution of the
following equation:

Vai = ci, (12)

where V
�
= (v1, ...,vL)T

, vl
�
=

pj(l)−pj′(l)

‖pj(l)−pj′(l)‖
is a normal-

ized axis, and ci
�
= [cos(θ̂i,j(1)j′(1)), ..., cos(θ̂i,j(L)j′(L))]

T .
Sensor pairs should be selected so that rank(V) ≥ 3 if the
potential source locations are three-dimensional.

In a practical situation, θ̂i,j(l)j′(l) has an estimation er-
ror, and (12) has no exact solution. Thus we adopt an opti-
mal solution by employing certain criteria such as:

âi = argmin
a

||Va − ci|| (subject to ||a|| = 1) (13)

This can be solved approximately by using the Moore-
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Figure 4: Estimated DOAs of frequency components

(above) and clustered result (below)

Penrose pseudo-inverse V+ �
= (VT V)−1VT , and we

have:

âi ≈
V+ci

||V+ci||
. (14)

Accordingly, we can determine a unit vector âi pointing to
the direction of source si.

Figure 4 shows an example of a DOA estimation re-
sult. Each point plotted on a unit sphere denotes the es-
timated DOA of a frequency component in one frequency
bin. The points can be clustered by using an ordinary clus-
tering method such as the k-means algorithm [14], then the
DOAs of source signals are given as the centroids of the
clusters. This information is useful for solving the permuta-
tion problem.

2.3. Permutation solver using DOA and correlation

This subsection outlines the procedure for permutation
alignment by integrating a DOA based approach and a cor-
relation approach. This procedure has been detailed in [11],
and consists of the following steps:

1. Cluster separated frequency components yk(f, m) for

all k and all f by using the estimated DOA, and de-
cide the permutations at certain frequencies where the
confidence of DOA estimation is sufficiently high.

2. Decide the permutations to maximize the sum of the
inter-frequency correlation of the separated signals.
The correlation should be calculated for the ampli-
tude |yk(f, m)| or (log-scaled) power |yk(f, m)|2 in-
stead of the raw complex-valued signals yk(f, m),
since the correlation of raw signals would be very
low because of the short-time DFT property. The sum
of the correlations between |yk(f, m)| and |yk(g, m)|
within distance δ (i.e. |f − g| < δ) is used as a cri-
terion. The permutations are decided for frequencies
where the criterion gives a clear-cut decision.

3. Calculate the correlations between |yk(f, m)| and its
harmonics |yk(g, m)| (g = 2f, 3f, 4f, ...), and decide
the permutations that maximize the sum of the corre-
lations. The permutations are decided for frequencies
where the correlation among harmonics is sufficiently
high.

4. Decide the permutations for the remaining frequen-
cies based on neighboring correlations.

The DOA estimation suffers from errors in a reverberant
environment and the classification according to the DOA is
inconsistent in some frequency bins. The correlation based
method is not robust since a misalignment at one frequency
bin causes consecutive misalignments. The main advantage
of the integrated method is that it does not cause a large
misalignment as long as the permutations fixed by the DOA
based approach are correct. Moreover, the correlation part
(steps 2, 3 and 4) compensates for the lack of preciseness of
the DOA based approach. The correlation part consists of
three steps for two reasons. First, the harmonics part (step
3) works well if most of the other permutations are fixed.
Second, the method becomes more robust by quitting the
step 2 if there is no clear-cut decision. With this structure,
we can avoid fixing the permutations for consecutive fre-
quencies without high confidence. This integrated method
is effective when the number of source signals is large.

2.4. Spectral smoothing with error minimization

Frequency domain BSS is influenced by the circularity of
the discrete frequency representation. This causes a prob-
lem when we convert separation matrices in the frequency
domain into a separation filter in the time domain. This
problem is not apparent when there are two sources, how-
ever it is crucial when the number of source signals exceeds
two. Our technique for solving this problem involves spec-
tral smoothing of separation filters by using a window that
tapers smoothly to zero at each end. The direct application
of windowing changes the frequency responses for separa-
tion obtained by ICA and causes an error. Therefore, we ad-
just the frequency responses before windowing so that the
error is minimized. The procedure is presented in detail in
[15].
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Figure 5: Prototype system and experimental settings

Table 1: Specifications of prototype system
Microphone 8 omni-directional microphones

Sampling rate 8 kHz
Frame length 2048 points (256 ms)

Frame shift 512 points (64 ms)

ICA algorithm FastICA + Infomax (complex valued)
CPU Intel Pentium M (2.0 GHz)

Coding MATLAB + C

Computation time 25 s for 6 sources 8 s data

3. PROTOTYPE SYSTEM AND EXPERIMENTS

We have developed a prototype using the techniques de-
scribed above. Our system uses 8 microphones located at
the vertexes of a 4cm×4cm×4cm cube and has the abil-
ity to separate six signals distributed in three-dimensional
space (Fig. 5). The system specifications are summarized in
Table 1. This system is implemented in software (MATLAB
+ C) and needs no special hardware except for an A/D con-
verter. We calculated W by using a complex-valued version
of FastICA [16] and improved it further by using InfoMax
[17] combined with the natural gradient whose nonlinear
function is based on the polar coordinate [18].

We carried out experiments in an ordinary office and
evaluated the Signal to Interference Ratio (SIR) perfor-
mance. The source locations are shown in Fig. 5. We
calculated the separation filter by using live recorded mix-
tures, and evaluated the SIRs by using individually activated
source signals. The experimental results are shown in Ta-
ble 2. We obtained good separation performance in spite of
the very low input SIR. The average SIR improvement was
more than 20 dB.

Table 2: Experimental results (dB)
SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 ave.

Input SIR −11.6 −9.0 −9.0 −6.6 −6.9 −2.5 −7.6

Output SIR 7.6 12.2 16.4 14.4 13.6 13.7 13.0

4. CONCLUSION

We have developed a prototype system for the BSS of many
speech signals distributed in three-dimensional space. Our
experimental result in an ordinary office showed good sepa-
ration performance. Some sound examples can be found on
our web site [19].
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