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SUMMARY This paper describes a real-time blind source separation
(BSS) method for moving speech signals in a room. Our method em-
ploys frequency domain independent component analysis (ICA) using a
blockwise batch algorithm in the first stage, and the separated signals
are refined by postprocessing using crosstalk component estimation and
non-stationary spectral subtraction in the second stage. The blockwise
batch algorithm achieves better performance than an online algorithm
when sources are fixed, and the postprocessing compensates for perfor-
mance degradation caused by source movement. Experimental results us-
ing speech signals recorded in a real room show that the proposed method
realizes robust real-time separation for moving sources. Our method is im-
plemented on a standard PC and works in realtime.
key words: blind source separation, independent component analysis, con-
volutive mixtures, realtime, spectral subtraction, post processing

1. Introduction

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only observed mixtures.
The BSS of audio signals has a wide range of applica-
tions including noise robust speech recognition, hands-
free telecommunication systems and high-quality hearing
aids. In most realistic applications, the source location may
change, and the mixing system is time-varying. Although a
large number of studies have been undertaken on BSS based
on independent component analysis (ICA) [1]–[5], only few
studies have been made on BSS for moving source signals
[6]–[9]. Indeed an online algorithm can track a time-varying
system, however, in general, its performance is worse than
a batch algorithm when the system becomes stationary. Al-
though we are dealing with moving sources, we do not want
to degrade the performance for fixed sources.

In this paper, we propose a robust real-time BSS
method that employs frequency domain ICA using a block-
wise batch algorithm in the first stage, and the postprocess-
ing of crosstalk component estimation and non-stationary
spectral subtraction in the second stage. When we adopt a
blockwise frequency domain ICA, we need to solve a per-
mutation problem for every block, and this is a time con-
suming process especially when the block length is short.
We use an algorithm based on analytical calculation of null
directions to solve the permutation problem quickly [10].
Another problem inherent to batch algorithms is an input-
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output delay. To reduce the delay, we use a technique for
computing output signal without waiting for the calculation
of the separating system to be completed. These techniques
are useful for realizing low-delay real-time BSS.

The blockwise batch algorithm achieves better separa-
tion performance than an online algorithm for fixed source
signals, but the performance declines for moving sources.
As we pointed out in [11], the solution of ICA works like
an adaptive beamformer, which forms a spatial null towards
a jammer signal. This characteristic means that BSS using
ICA is fragile as regards a moving jammer signal but robust
with respect to a moving target signal. Utilizing this nature,
we can estimate residual crosstalk components even when
a jammer signal moves. To compensate for the degradation
when a jammer signal moves, we employ postprocessing in
the second stage. Figure 1 shows a block diagram of the
proposed method for one output channel in one frequency
bin. In contrast to the original spectral subtraction [12],
which assumes stationary noise and periods with no target
signal when estimating the noise spectrum, our method re-
quires neither assumption because we use BSS in the first
stage. A large amount of research has been undertaken on
spectral subtraction for non-stationary noise conditions, and
some researchers have proposed a combination comprising
a microphone array and spectral subtraction [13], [14]. In
our method, the jammer signal is mostly eliminated by the
first stage, and the spectral subtraction is used for removing
residual components which have small power. In addition,
we can estimate the non-stationary spectrum accurately by
utilizing signals separated in the first stage. Therefore the
distortion of separated signals caused by over subtraction or
under subtraction is small.

This paper is organized as follows. In the next section,
we summarize the algorithm of frequency domain BSS for
convolutive mixtures and formulate a blockwise batch algo-

Fig. 1 Block diagram of proposed system for one output channel in one
frequency bin.
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rithm. In Sect. 3, we propose an algorithm to estimate and
subtract residual crosstalk components in the separated sig-
nals. Section 4 presents experimental results using speech
signals recorded in a room and show the effectiveness of the
method in realizing robust real-time separation. Section 5
concludes this paper.

2. ICA Based BSS of Convolutive Mixtures

In this section, we briefly review the BSS algorithm that uses
frequency domain ICA and formulate a blockwise batch al-
gorithm including an online algorithm as a special case. We
also describe a fast algorithm for solving permutation prob-
lems, which is necessary for real-time processing.

2.1 Frequency Domain ICA

When the source signals are si(t)(i = 1, ...,N), the signals
observed by microphone j are x j(t)( j = 1, ...,M), and the
separated signals are yk(t)(k = 1, ...,N), the BSS model can
be described by the following equations:

x j(t) =
N∑

i=1

(hji ∗ si)(t) (1)

yk(t) =
M∑

j=1

(wk j ∗ x j)(t) (2)

where hji is the impulse response from source i to micro-
phone j, wk j are the separating filters, and ∗ denotes the
convolution operator.

A convolutive mixture in the time domain is converted
into multiple instantaneous mixtures in the frequency do-
main. Therefore, we can apply an ordinary ICA algorithm
in the frequency domain to solve a BSS problem in a re-
verberant environment. Using a short-time discrete Fourier
transform (STDFT) for (1), the model is approximated as:

X(ω, n) = H(ω)S(ω, n), (3)

where, ω is the angular frequency, and n represents the
frame index. The separating process can be formulated in
each frequency bin as:

Y(ω, n) =W(ω)X(ω, n), (4)

where S(ω, n) = [S 1(ω, n), ..., S N(ω, n)]T is the source
signal in frequency bin ω, X(ω, n) = [X1(ω, n), ...,
XM(ω, n)]T denotes the observed signals, Y(ω, n) =

[Y1(ω, n), ..., YN(ω, n)]T is the estimated source signal, and
W(ω) represents the separating matrix. W(ω) is determined
so that Yi(ω, n) and Yj(ω, n) become mutually independent.

To calculate the separating matrix W, we use an opti-
mization algorithm based on the minimization of the mutual
information of Y. The optimal W is obtained by the follow-
ing iterative equation using the natural gradient approach
[15]:

W(i+1) =W(i) + µ[I − 〈Φ(Y)YH〉]W(i), (5)

where i is an index for the iteration, I is an identity matrix, µ
is a step size parameter, 〈·〉 denotes the averaging operator,
and Φ(·) is a nonlinear function. Because the signals have
complex values in the frequency domain, we use a polar co-
ordinate based nonlinear function, which is effective for fast
convergence especially when the number of input data sam-
ples is small [16]:

Φ(Y) = tanh(g · abs(Y))e  arg(Y), (6)

where g is a gain parameter that controls the nonlinearity.

2.2 Scaling and Permutation

Once we have completed the ICA for all frequencies, we
need to solve the permutation and scaling problems. Since
we are handling signals with complex values, the scaling
factors are also complex values. Thus the scaling can be
divided into phase scaling and amplitude scaling. We use a
direction of arrival (DOA) based method to solve the permu-
tation and phase scaling problems. The permutation prob-
lem is solved so that the DOAs of the separated signals are
aligned, and the phase scaling problem is solved so that the
phase response of the estimated source direction becomes
zero.

The DOA of the i-th separated signal θi(ω) can be cal-
culated analytically as [10]:

θi(ω) = arccos
arg([W(ω)−1] ji/[W(ω)−1] j′i)

ωc−1|dj − dj′ | , (7)

where [·] ji denotes ji-th element of the matrix, c is the
speed of sound, and dj represents a location of microphone
j. This method does not require the directivity pattern to
be scanned, thus we can solve the permutation problem
quickly.

The amplitude scaling problem is solved by using a
slightly modified version of the method described in [17].
We calculate the inverse of the separating matrices W(ω)−1,
and decide the scaling factors so that the norms of each col-
umn of W(ω)−1 become uniform.

2.3 Low Delay Blockwise Batch Algorithm

In order to track the time-varying mixing system, we up-
date the separating matrix for each time block Bm = {t :
(m − 1)Tb ≤ t < mTb}, where Tb is the block size, and m
represents the block index (m ≥ 1).

Koutras et al. have proposed a similar method in the
time domain [7]. When Tb equals the STDFT frame length,
this procedure can be considered an online algorithm in the
frequency domain.

We use the separating matrix of the previous block as
the initial iteration value for a new block, i.e., W(0)

m+1(ω) =
W(NI )

m (ω), where NI is the number of iterations for (5). We
use a set of two null beamformers as the initial matrix
W(0)

1 (ω) for the first block.
The batch algorithm has an inherent delay, because the
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Fig. 2 Input-output delay of (a) BSS using ordinary blockwise batch al-
gorithm, and (b) BSS without waiting for calculation of Wm.

Fig. 3 Data flow of low delay blockwise batch algorithm.

calculation of W needs to wait for the arrival of a data block.
Moreover, the calculation itself also takes time (Fig. 2(a)).
However, when the calculation is completed within Tb and
we use Wm−2 for separation of the signals in Bm, we can
avoid the delay for waiting and calculation (Fig. 2(b)). This
technique can reduce the input-output delay and is suitable
for low-delay real-time applications. Figure 3 shows a data
flow diagram of the proposed method. The block of the ob-
served signal Xm is queued for the ICA process. Concur-
rently, Xm is separated by Wm−2, which is ready before the
arrival of Xm. Accordingly, the block of the separated signal
Ym can be calculated with low delay.

It seems that this method fails when a source sig-
nal moves, but it is actually robust for the moving target
signal, which is shown in Sect. 4.3. Unfortunately, this
method suffer performance deterioration when a jammer
signal moves. To cope with this problem, we propose a
postprocessing method using crosstalk component estima-
tion and non-stationary spectral subtraction which reduces
the performance deterioration.

3. Residual Crosstalk Subtraction

In this section, we examine the nature of separated signals
obtained by the frequency domain ICA described in the pre-
vious section. We then propose an algorithm to estimate and

Fig. 4 Impulse responses of straight path and cross path.

subtract residual crosstalk components in these signals. We
have examined this algorithm with fixed speech signals and
confirmed the effectiveness of the proposed method in [18].

3.1 Straight and Crosstalk Components of BSS

When we denote the concatenation of a mixing system and
a separating system as G(ω), i.e., G(ω) = W(ω)H(ω), each
of the separated signals Yi obtained by BSS can be described
as follows:

Yi(ω, n) =
N∑

j=1

Gi j(ω)S j(ω, n). (8)

We decompose Yi into the sum of straight component
Y (s)

i derived from target signal S i and crosstalk component
Y (c)

i derived from jammer signals S j( j � i). Then, we have

Yi(ω, n) = Y (s)
i (ω, n) + Y (c)

i (ω, n) (9)

Y (s)
i (ω, n) = Gii(ω)S i(ω, n) (10)

Y (c)
i (ω, n) =

∑

j�i

Gi j(ω)S j(ω, n). (11)

We denote estimation of Y (s)
i and Y (c)

i as Ŷ (s)
i and Ŷ (c)

i ,
respectively. Our goal is to estimate the spectrum of Y (c)

i

using only Yj(1 ≤ j ≤ N) and obtain Ŷ (s)
i by subtracting Ŷ (c)

i
from Yi.

In our previous research [19], we measured the impulse
responses of the straight and cross paths of a BSS system.
As a result, we found that the direct sound of a jammer can
be almost completely removed by BSS, and also that resid-
ual crosstalk components are derived from the reverberation
(Fig. 4). We utilize these characteristics of separated signals
to estimate the crosstalk components.

3.2 Model of Residual Crosstalk Component Estimation

Figure 5 shows an example of a narrow band power spec-
trum of straight and crosstalk components in separated sig-
nals obtained by a two-input two-output BSS system. The
crosstalk component Y (c)

1 is in Y1 and the straight compo-
nent Y (s)

2 is in Y2. Both components are derived from source
signal S 2; Y (c)

1 is derived from the reverberation of S 2 and
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Fig. 5 Example of narrow band power spectrum of straight and crosstalk
components (ω = 320 Hz).

Y (s)
2 is mainly derived from the direct sound of S 2. Accord-

ingly, for the narrow band signal in each frequency bin, the
crosstalk component Y (c)

1 can be approximated by the out-
put of the filter whose input is the straight component of the
other channel Y (s)

2 .
We extend this approximation to multiple signals by

introducing filters ai j(ω, n) = [ai j0(ω, n), ..., ai jL−1(ω, n)]T

for each frequency bin ω and combination of channels i and
j (i � j), where L is the length of filters.

Furthermore, we use Yj as an approximation of Y (s)
j ,

because Y (s)
j is actually unknown. Therefore, the model for

estimating residual crosstalk components is formulated as
follows:

|Y (c)
i (ω, n)|β

≈
∑

j�i

L−1∑

k=0

ai jk(ω, n)|Y (s)
j (ω, n − k)|β (12)

≈
∑

j�i

L−1∑

k=0

ai jk(ω, n)|Yj(ω, n − k)|β (13)

where the exponent β = 1 for the magnitude spectrum and
β = 2 for the power spectrum.

3.3 Adaptive Algorithm and Spectrum Estimation

Figure 6 shows a block diagram of the proposed method for
one output channel. We estimate filters ai j described in the
previous section by using an adaptive algorithm based on
the normalized LMS (NLMS) algorithm [20].

For each i, the filters âi j(ω, n) are adapted so that the
sum of the output signals becomes |Y (c)

i (ω, n)|β for input
signals |Y (s)

j (ω, n)|β (1 ≤ j ≤ N, j � i). Unfortunately,

|Y (c)
i (ω, n)| and |Y (s)

j (ω, n)| are unknown, so they are sub-
stituted by |Yi(ω, n)| and |Yj(ω, n)|, respectively. We as-
sume that |Y (s)

i (ω, n)| can be approximated by |Yi(ω, n)|when
|Yi(ω, n)| is large and |Y (c)

i (ω, n)| can be approximated by
|Yi(ω, n)| when |Yi(ω, n)| is small. This assumption is based
on the characteristics of narrow band signals where Y (s)

i

and Y (s)
j seldom have large power simultaneously, especially

when the source signals are speech signals. A detailed anal-
ysis of overlapping frequency components of speech signals
can be found in [21] and [22].

Since not all |Y (c)
i (ω, n)| and |Y (s)

i (ω, n)| can be approx-

Fig. 6 Adaptive filters and spectral subtractor to estimate Y (s)
i (for i = 1).

imated by |Yi(ω, n)|, only a subset of the filters is updated
at each iteration. To formulate a selective update algorithm,
we introduce sets of channel index numbers, IS (ω, n) = {i :
|Yi(ω, n)| ≈ |Y (s)

i (ω, n)|} and IC(ω, n) = {i : |Yi(ω, n)| ≈
|Y (c)

i (ω, n)|}. This means that |Y (s)
i (ω, n)| can be approxi-

mated by |Yi(ω, n)| for i ∈ IS (ω, n) and |Y (c)
i (ω, n)| can be

approximated by |Yi(ω, n)| for i ∈ IC(ω, n).
One example implementation for determining IS (ω, n)

and IC(ω, n) is IS (ω, n) = {i : i = argmaxi |Yi(ω, n)|} and
IC(ω, n) = IS (ω, n). Another example is IS (ω, n) = {i :
|Yi(ω, n)| > threshold} and IC(ω, n) = IS (ω, n).

The filters âi j are updated for i ∈ IC(ω, n) and j ∈
IS (ω, n). The update procedure is given by

âi j(ω, n + 1) (14)

=



âi j(ω, n) +
η

δ + ||u j(ω, n)||2 u j(ω, n)ei j(ω, n)

(if i ∈ IC(ω, n), and j ∈ IS (ω, n))
âi j(ω, n) (otherwise)

,

where u j(ω, n) = [|Yj(ω, n)|β, |Yj(ω, n − 1)|β, ..., |Yj(ω, n −
L + 1)|β]T is a tap input vector and ei j(ω, n) = |Yi(ω, n)|β −∑

j�i âT
i j(ω, n)u j(ω, n) is an estimation error. Here, η is a step

size parameter and δ is a positive constant to avoid numeri-
cal unstability when ||u j|| is very small.

We apply the estimated filters to the model (13), and
obtain an estimation of the power of residual crosstalk com-
ponents:

|Ŷ (c)
i (ω, n)|β ≈

∑

j�i

âT
i j(ω, n)u j(ω, n). (15)

Finally, we obtain an estimation of the straight compo-
nent as Ŷ (s)

i by the following spectral subtraction procedure:

Ŷ (s)
i (ω, n) (16)

=



(|Yi(ω, n)|β − |Ŷ (c)
i (ω, n)|β)1/β Yi(ω, n)

|Yi(ω, n)|
(if |Yi(ω, n)| > |Ŷ (c)

i (ω, n)|)
0 (otherwise)

.
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4. Experiments and Discussions

4.1 Experimental Conditions

To examine the effectiveness of the proposed method, we
carried out experiments using speech signals recorded in
a room. The reverberation time of the room was 130 ms.
We used two omni-directional microphones with an inter-
element spacing of 4 cm. The layout of the room is shown
in Fig. 7. The target source signal was first located at A, and
then moved to B at a speed of 30 deg/s. The jammer signal
was located at C and moved to D at a speed of 40 deg/s.

The step size parameter µ in (5) affects the separation
performance of BSS when the block size changes. We car-
ried out preliminary experiments and chose µ to optimize
the performance for each block size. Other conditions are
summarized in Table 1. The frame shift and the filter length
L in the postprocessing part were decided so that the filter
could cover the reverberation.

To update filters âi j(ω, n), we used the following sim-
ple selective update policy:

if |Y1(ω, n)| > |Y2(ω, n)|
then IS (ω, n) = {1}, IC(ω, n) = {2}
else IS (ω, n) = {2}, IC(ω, n) = {1}.

We assumed the straight component y(s)
1 as a signal,

and the difference between the output signal and the straight

Fig. 7 Layout of room used in experiments.

Table 1 Experimental conditions.

Common Sampling rate = 8 kHz
Window = hanning
Reverberation time TR=130 ms

ICA part Frame length TICA = 1024 point (128 ms)
Frame shift = 256 point (32 ms)
g = 100.0
µ = optimized for block size Tb

Number of iterations NI = 100
Post Frame length TS S = 1024 point (128 ms)
processing Frame shift = 64 point (8 ms)
part Filter length L = 16

β = 2
δ = 0.01
η = 0.1

component as interference. We defined the output signal-to-
interference ratio (SIRO) in the time domain as follows:

SIRO ≡ 10 log

∑
t |y(s)

1 (t)|2
∑

t |y1(t) − y(s)
1 (t)|2 (dB). (17)

Similarly, the input SIR (SIRI) is defined as,

SIRI ≡ 10 log

∑
t
∑2

i=1 |(hi1 ∗ s1)(t)|2
∑

t
∑2

i=1 |(hi2 ∗ s2)(t)|2 (dB). (18)

We use SIR = SIRO − SIRI as a performance measure. This
measurement is consistent with the performance evaluation
of BSS in which the crosstalk component is assumed as
interference. We measured SIRs with 30 combinations of
source signals using three male and three female speakers,
and averaged them.

4.2 Performance for Fixed Sources

Although we are dealing with moving sources, we do not
want the performance for fixed sources to deteriorate. First,
we measured the BSS performance using ICA without post-
processing. Figure 8 shows the average and standard de-
viation of SIR for fixed sources (the target is at A and the
jammer at C in Fig. 7). This indicates that the blockwise
batch algorithm outperforms the online algorithm (in which
µ is tuned to optimize the performance), when we use the
update Eq. (5). In addition, the deviation of the batch al-
gorithm is smaller than that of the online algorithm. This
is why we adopt the blockwise batch algorithm in the first
stage. We used Tb = 1.0 sec. in the following experiments.

4.3 Moving Target and Moving Jammer

Before considering the result obtained with the postprocess-
ing method, we investigate the BSS performance for mov-
ing sources using the blockwise batch algorithm. Figure 9
shows the SIR for a moving target (solid line) and for a mov-
ing jammer (dotted line). We can see that the SIR is not
degraded even when the target moves. By contrast, jammer
movement causes a decline in the SIR.

This can be explained by the directivity pattern of the

Fig. 8 Average and standard deviation of SIR for fixed sources.
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Fig. 9 SIR of blockwise batch algorithm without postprocessing. Target
and jammer signals moved at 10 sec. (Tb = 1.0 sec.)

Fig. 10 Directivity pattern of separating system obtained by frequency
domain ICA.

separating system obtained by ICA. The solution of fre-
quency domain BSS works in the same way as an adaptive
beamformer, which forms a spatial null towards a jammer
signal (Fig. 10). Because of this characteristic, BSS using
ICA is robust as regards a moving target signal but fragile
with respect to a moving jammer signal.

4.4 Performance of Blockwise Batch Algorithm with
Postprocessing

The most important factor when estimating the crosstalk
component Y (c)

1 using (14) and (15) is Y2, and Y2 is estimated
robustly even when S 2 moves, because S 2 is a target signal
for Y2. Therefore, postprocessing works robustly even when
the jammer signal S 2 moves.

Figure 11 shows the SIR of blockwise batch algorithm
with postprocessing when the jammer signal moves (solid
line). We can see that the SIR is improved by the postpro-
cessing, and the drop of the SIR when the jammer moves is
reduced. This result shows that our postprocessing method
can compensate the fragility of the blockwise batch algo-
rithm when a jammer signal moves. Although crosstalk
components still remaining in the postprocessed output sig-
nal sometimes make a musical noise, the power is much
smaller than ordinary spectral subtraction.

Fig. 11 Effect of postprocessing. Jammer signal moved from C to D at
10 sec. (Tb = 1.0 sec.)

Fig. 12 Performance of online algorithm with and without postprocess-
ing. Jammer signal moved from C to D at 10 sec. (Tb = 1.0 sec.)

4.5 Performance of Online Algorithm

Figure 12 shows the SIR of online algorithm with and with-
out postprocessing. The online algorithm is more stable than
blockwise algorithm, however the performance is worse
when the sources are stationary, as we described in Sect. 4.2.
The postprocessing is also effective for this case, thus we
may choose the algorithm in the first stage according to re-
quirements of the application.

5. Conclusion

We proposed a robust real-time BSS method for moving
source signals. The combination of the blockwise batch
and the postprocessing realizes a robust low-delay real-time
BSS. We can solve a permutation problem quickly by us-
ing analytical calculation of null directions, and this tech-
nique is useful for solving convolutive BSS problems in
realtime. Postprocessing using crosstalk component esti-
mation and non-stationary spectral subtraction improves the
separation performance and reduces the performance deteri-
oration when a jammer signal moves. Experimental results
using speech signals recorded in a room showed the effec-
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tiveness of the proposed method. Some sound examples can
be found on our web site [23].

Acknowledgement

We thank Dr. Shigeru Katagiri for his continuous encour-
agement.

References

[1] A.J. Bell and T.J. Sejnowski, “An information-maximization ap-
proach to blind separation and blind deconvolution,” Neural Com-
put., vol.7, no.6, pp.1129–1159, 1995.

[2] S. Haykin, ed., Unsupervised Adaptive Filtering, John Wiley &
Sons, 2000.

[3] T.W. Lee, Independent Component Analysis, Kluwer Academic
Publishers, 1998.

[4] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Pro-
cessing, John Wiley & Sons, 2002.

[5] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component
Analysis, John Wiley & Sons, 2001.

[6] J. Anemüller and T. Gramss, “On-line blind separation of moving
sound sources,” Proc. Intl. Conf. on Independent Component Anal-
ysis and Blind Source Separation (ICA’99), pp.331–334, 1999.

[7] A. Koutras, E. Dermatas, and G. Kokkinakis, “Blind speech sepa-
ration of moving speakers in real reverberant environment,” Proc.
ICASSP 2000, pp.1133–1136, 2000.

[8] I. Kopriva, Z. Devcic, and H. Szu, “An adaptive short-time frequency
domain algorithm for blind separation of non-stationary convolved
mixtures,” Proc. IJCNN 2001, pp.424–429, 2001.

[9] K.E. Hild II, D. Erdogmus, and J.C. Principe, “Blind source separa-
tion of time-varying, instantaneous mixtures using an on-line algo-
rithm,” Proc. ICASSP 2002, pp.993–996, 2002.

[10] H. Sawada, R. Mukai, and S. Makino, “Direction of arrival estima-
tion for multiple source signals using independent component anal-
ysis,” Proc. ISSPA 2003, vol.2, pp.411–414, 2003.

[11] S. Araki, S. Makino, R. Mukai, and H. Saruwatari, “Equivalence be-
tween frequency domain blind source separation and frequency do-
main adaptive null beamformers,” Proc. Eurospeech 2001, pp.2595–
2598, 2001.

[12] S.F. Boll, “Suppression of acoustic noise in speech using spec-
tral subtraction,” IEEE Trans. Acoust. Speech Signal Process.,
vol.ASSP-27, no.2, pp.113–120, April 1979.

[13] M. Mizumachi and M. Akagi, “Noise reduction by paired-
microphones using spectral subtraction,” Proc. ICASSP’98,
pp.1001–1004, 1998.

[14] Q. Zou, X. Zou, M. Zhang, and Z. Lin, “A robust speech detection
algorithm in a microphone array teleconferencing system,” ICASSP
2001, pp.3025–3028, 2001.

[15] S. Amari, A. Cichocki, and H.H. Yang, “A new learning algorithm
for blind signal separation,” in Advances in Neural Information Pro-
cessing Systems 8, pp.757–763, MIT Press, 1996.

[16] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Polar coordinate
based nonlinear function for frequency-domain blind source separa-
tion,” Proc. ICASSP 2002, pp.1001–1004, 2002.

[17] F. Asano and S. Ikeda, “Evaluation and real-time implementation of
blind source separation system using time-delayed decorrelation,”
Proc. Intl. Workshop on Independent Component Analysis and Blind
Signal Separation (ICA’00), pp.411–415, 2000.

[18] R. Mukai, S. Araki, H. Sawada, and S. Makino, “Removal of resid-
ual crosstalk components in blind source separation using LMS fil-
ters,” Proc. NNSP 2002, pp.435–444, 2002.

[19] R. Mukai, S. Araki, and S. Makino, “Separation and dereverberation
performance of frequency domain blind source separation,” Proc.
Intl. Workshop on Independent Component Analysis and Blind Sig-
nal Separation (ICA’01), pp.230–235, 2001.

[20] S. Haykin, Adaptive Filter Theory, Prentice Hall, 2002.
[21] M. Aoki, M. Okamoto, S. Aoki, H. Matsui, T. Sakurai, and

Y. Kaneda, “Sound source segregation based on estimating incident
angle of each frequency component of input signals acquired by
multiple microphones,” Acoust. Sci. & Tech., vol.22, no.2, pp.149–
157, Feb. 2001.
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