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ABSTRACT

Independent low-rank matrix analysis (ILRMA) can
achieve highest-quality separation performance among
blind source separation methods, but it still fails to separate
the target speech under diffuse noise conditions. To solve
this problem, rank-constrained special covariance matrix
(SCM) estimation has been proposed. This method esti-
mates the full-rank SCM of diffuse noise using spatial pa-
rameters estimated by ILRMA as the preprocessing and
suppresses the noise in the direction of the target source.
On the other hand, a semi-supervised extension of sim-
ple ILRMA, basis-shared ILRMA (BS-ILRMA), has been
proposed. This method employs two ILRMAs for noise
training and separation and achieves more effective sep-
aration than simple ILRMA. BS-ILRMA, as well as IL-
RMA, is a linear separation filter using estimated spatial
parameters. In this paper, we introduce BS-ILRMA to the
spatial parameter estimation as the preprocessing of rank-
constrained SCM estimation. We evaluate the practical
performance of the proposed method using our developed
hearing-aid system that consists of binaural microphone ar-
rays and the user’s smartphone microphones.

1. Introduction

When we use a binaural hearing-aid system in a noisy en-
vironment, target-speech extraction is necessary because
speech is always contaminated by noise. In binaural
hearing-aid systems, blind source separation (BSS) [1]
and semi-supervised source separation are suitable be-
cause these work well without spatial information or par-
tial source information as training data. Among many
BSS methods, independent low-rank matrix analysis (IL-
RMA) [2] achieves effective and accurate separation. As a
semi-supervised extension of simple ILRMA, basis-shared
ILRMA (BS-ILRMA) has been proposed [3]. BS-ILRMA
was originally proposed for a rescue robot and separates
survivor’s voice from the loud noise the robot gener-
ates (ego-noise). In this application, training data of the
target speech cannot be obtained, but ego-noise can eas-
ily be acquired in advance. For hearing-aid systems, BS-
ILRMA is applicable because noise information can be ac-
quired as the observed signal before conversation. How-
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ever, the efficacy of BS-ILRMA for hearing-aid systems
has not yet been determined because it has some disad-
vantages compared with the ego-noise separation task; the
available data length is small; the distance from micro-
phones to noise sources is long; there are various inter-
ferers (e.g., human voice and footsteps).

Linear time-invariant filters such as ILRMA and BS-
ILRMA cannot separate the target speech under diffuse
noise conditions in principle [4]. To overcome this lim-
itation, rank-constrained spatial covariance matrix (SCM)
estimation [4] has been proposed as an effective method for
a situation in which noise arrives from all directions, i.e.,
diffuse noise condition. Basically, this method estimates a
full-rank SCM [5], which represents spatial characteristics
of diffuse noise, just as multichannel nonnegative matrix
factorization (NMF) [6, 7] does. Rank-constrained SCM
estimation consists of the following two steps: estimation
of spatial parameters using ILRMA as the first step and
suppression of the noise in the direction of the target source
using the estimated spatial parameters as the second step.
Multichannel NMF is sensitive to parameter initialization
and requires the estimation of an enormous number of pa-
rameters, leading to a high computational cost. In contrast
to multichannel NMF, the rank-constrained SCM estima-
tion reduces the number of parameters by using the highly
accurate spatial parameters obtained by ILRMA and re-
stores the lost spatial basis for diffuse noise.

We have developed a multichannel hearing-aid system
including binaural ear-attached microphones and smart-
phone microphones [8]. The additional microphones from
a smartphone increase the total number of microphones
as well as provides spatial information apart from the
user’s ears, although these microphones are not synchro-
nized with the ear-attached microphones. We confirmed
that rank-constrained SCM estimation whose parameters
are preestimated by ILRMA achieves a high-quality sep-
aration performance for our developed hearing-aid sys-
tem [8]. If BS-ILRMA is more effective than ILRMA,
rank-constrained SCM estimation is expected to achieve
higher-quality separation performance by introducing BS-
ILRMA to the first step. In this paper, first, we show
the efficacy of BS-ILRMA for practical data recorded
by our developed hearing-aid system. Next, we show
that rank-constrained SCM estimation that employs BS-



ILRMA as the parameter initialization process can achieve
high-quality separation performance.

2. Formulation and BSS Algorithms
2.1 Formulation

Let us consider separating a multichannel observed signal,
which is obtained by M microphones capturing the signals
arriving from N sources. The source, observed, and sepa-
rated signals in each time-frequency slot are denoted as

8;j = (sij’l,...,sijyn,...,sij,N)T, €))
T = (x”1,...,x1-j7m,...,xij,M)T, 2)
Yi; = Wij1s - Yijms - Yis.N) | (€)]
where : = 1,...,I, 5 =1,...,J,n = 1,...,N, and
m = 1,..., M indicate the indexes of the frequency bins,

time frames, sources, and microphones, respectively. The
operator - ' indicates transpose. When each source is a
directional source and the window length of short-time
Fourier transform (STFT) is sufficiently larger than that
of the impulse responses from each source to each mi-
crophone, the observed signal x;; and the mixing ma-
trix A; = (a; 1+ -a; n) € CM*N in each frequency bin
have the relation

“

where a; ,, is the steering vector for each source. If the
number of microphones is equal to that of sources (M =
N) and A, is not a singular matrix, the separated signal y, ;
can be obtained by estimating the demixing matrix W; =
Ai_l = (wi71 . "LULN)H € CVXM g

xij = A;iSij,

y,; = Wizij, )]

where the operator - denotes the Hermitian transpose.

2.2 ILRMA

In ILRMA [2], the component of the nth source in each
time-frequency slot is assumed to be generated from a sta-
tistical model that follows the univariate complex Gaussian
distribution as

Sijn ~ N (0,7450) 5

Tijn = E til, nVijn,
1

where NV (u, 02) is a univariate complex Gaussian dis-
tribution with a mean y and variance o2, ti,n, > 0 and
vij,n > 0 are NMF variables of the basis matrix T',, €
RI*L and the activation matrix V,, € REXJ, respectively,
[l = 1,...,L is an index of the NMF basis, and L is
the number of bases. r;;, corresponds to the nth source
model. Simultaneously, the observed signal x;; follows
the multivariate complex Gaussian distribution because of
the reproductive property, i.e.,

'mul H
xij ~ N (0, g rij,nai’nai’n> ,
n

(6)
(N

®
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where N™! (11, ) is a multivariate complex Gaussian dis-
tribution with a mean vector p and the covariance ma-
trix 3. The steering vector a; ,, corresponds to the spatial
basis of the nth source, which constructs the rank-1 SCM
as a; nal,. The cost function of ILRMA Jirma is de-
fined as the negative log likelihood function

_ [Yij.n]?
Jirma = Y Y [0
n o 4,j

—2J log|det W;| + const.,

K2

+logrijn
Tijn

€))

where the NMF variables t; 5, and v;;,, and the demix-
ing matrix W, = A ! are estimated by minimizing (9),
which is the maximum likelihood estimation.

2.3 Rank-Constrained SCM Estimation

Linear time-invariant filters such as ILRMA cannot sep-
arate the target speech under diffuse noise conditions in
principle. To solve this problem, rank-constrained SCM
estimation has been proposed [4]. This estimation focuses
on a situation where one directional target source and dif-
fuse noise are mixed. This method consists of two pro-
cesses. First, we estimate the linear time-invariant fil-
ter W; by applying ILRMA to x;;.  Next, the resid-
ual noise in the direction of the target source is sup-
pressed by estimating the full-rank noise SCM. ILRMA
outputs M separated signals which consist of one “noise-
contaminated target speech” component and M — 1 noise-
only components (see [9] for the physical mechanism of
this phenomenon). The rank of SCM calculated from
M —1 “noise-only” signals is M — 1 [4]. The diffuse noise
SCM should be a full rank (i.e., rank-M); however, the es-
timated SCM lacks one rank (one spatial basis) that cor-
responds to the target source direction. Since the full-rank
noise SCM is required to suppress the noise in the direction
of the target source, in rank-constrained SCM estimation,
the noise SCM is modeled as an addition of rank-(M — 1)
SCM (preestimated by ILRMA) and another rank-1 SCM
whose eigenvalue is estimated.

The rank-constrained SCM estimation assumes the ob-
served signal x;; to be the sum of the target source image
vector h;; = (hij1,...,hijam) " and the diffuse noise im-
age vector u;; = (ujj 1, ..

T.:
'auij,l\/[) ; 1L.e.,

Tij = h7J + Uij. (10)
The source image vector h;; is expressed using a vector

corresponding to the target source, az(h ) —. a;n, out of

the spatial bases a; 1, ..., a; n obtained by ILRMA, and
(h)

the target source image s, as follows:
hi; =as!", (11)
s (0, rﬁ”) , (12)

where nj, indicates the index corresponding to the tar-
(h) _
i
get source (power spectrogram), where r

get source and r i Tijn, 1s the variance of the tar-

(R)

;; is assumed to



have sparsity in the time-frequency domain by modeling
its prior distribution with the inverse gamma distribution

as
—a—1
() exp (05 ] 13)
T

where o > 0, 8 > 0, and T'(+) are the shape parameter,
scale parameter, and gamma function, respectively.

The diffuse noise u;; follows the following multivariate
complex Gaussian distribution and is statistically indepen-
dent of the target source h;;:

/804

I'(a)

()

p(rij 304”6) =

wig ~ N (0,7 (14)

(u)
» g R; )7
where rf;-i) and R are the variance and the full-rank
SCM of diffuse noise, respectively. The SCM of the dif-

fuse noise RZ(-“) is represented by the demixing filter w; ,,

as
R =R'™ 1 \b;bll, (15)
o 1 .
R’Z(. ):j Z W diag(Jw!y@gj)?, .. [wi, @),
J
0wl nxi;? . Jwl e ) (WD, 16)

where the operator diag(ky, k2, ...) generates the square
diagonal matrix with the arguments on the main diagonal,
R’ﬁ“) is the noise SCM estimated by ILRMA whose rank

is M — 1, b; is a unit eigenvector corresponding to the zero

)

eigenvalue of R’l(-u and \; is the weight variable. Note

that, in RE“), only J\; is the variable to be optimized be-
cause R’gu) and b; are given by ILRMA as fixed values in
advance. By modeling the prior distribution of the target
source variance in (13), we express the negative log pos-
terior function £ of the rank-constrained SCM estimation

as
ﬁ(rgl), rgf), i) = Z [mg(REf))lm” + log det RZ(-;E)
%,
Dlogr® + 2 t
+ (a+1)logr;;” + —y | T const,
Tij
a7
H

R =rMaa" + YR, (18)

The parameters in this negative log posterior function £
are optimized by a maximum a posteriori estimation based
on the expectation—maximization (EM) algorithm [4]. Fi-
nally, multichannel Wiener filtering is applied to suppress
noise diffusing the observed signal using the estimated pa-
rameters.

3. BS-ILRMA and Application to Hearing-Aid
System

BS-ILRMA has been proposed for a rescue robot that
detects a survivor’s voice in a disaster site [3]. BS-
ILRMA simultaneously performs previously recorded ego-
noise training and extraction of the survivor’s voice. In
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Figure 1. Overview of BS-ILRMA, where upper and

lower models are simultaneously optimized.

the application to hearing-aid systems, the observed un-
voiced period, which does not contain speech and con-
versation, can be obtained as the noise samples (train-
ing signal of diffuse noise) in advance. Therefore, BS-
ILRMA is applicable for the hearing-aid system. Under
the M = N condition, BS-ILRMA assumes that N’

M’ = N —1 noise sources and one target source exist. Let
(noise) __ (noise) (noise) (noise) \T (mix) __
i’ ( N IEEERRE A TR AR "xij’,M’) and z;; " =
(mﬁ’;"‘f), e ,xi?‘j\‘})T be the prepared M’ ch noise samples
and M mixture signals, respectively. j° = 1,...,J  and

! 1,..., M’ indicate the indexes of the time frame

m =
and sources for noise samples, respectively.

We can consider a simple semi-supervised ILRMA by
employing pretrained basis matrices for noise sources,
which is a similar approach to the semi-supervised
NMF [10]. We call this method semi-supervised ILRMA
(SS-ILRMA) in this paper. SS-ILRMA trains the N’ noise
bases T ¢ RLXE by applying simple ILRMA to the

(noise)
ij’

noise samples x in advance and separates the M-

"™ by another ILRMA while
fixing the trained noise basis matrices TS,O is9) where the
index n’ = 1,..., N’ indicates the source of the noise
samples. However, this naive semi-supervised approach
fails to fully receive the benefits of employing the noise
sample. This is because the scale ambiguity in W ; among
frequency bins can collapse the spectral structures in the
supervised basis matrix Ti?f’ 5 13].

channel observed signals x

To solve this problem, BS-ILRMA has been proposed.
The overview of BS-ILRMA is shown in Fig. 1, where
Wose) ¢ CN'XM" gnd W™ ¢ CN*M represent the

demixing matrices for the noise samples wgﬁ’ise) and the
(mix) (noise) IxJ'
) ©J X m’ e C
and Y™ ¢ €' represent the spectrograms of the

m’th channel in :Bg}‘,’ise) and the n/th channel in y,(i‘]‘-?ise) =
( (noise)

(noise) \ T i IxJ
Yijr a-j-vyi;?:f/') Xn e cl
and Y™™ ¢ CI*7 represent the spectrograms of the

mth channel in :c?;ix) and the nth channel in y(mi")

)

observed signal x:. ", respectively.

, respectively.

(ygj“lx ... ,yizm’(]\,))—r respectively. | - |2 denotes entry-wise
absolute and squaring operations, T',,; € RIZT)L represents



the shared basis matrix for the noise sources, Ty € RIXE

represents the unshared basis matrix for the target source,
and V) ¢ RLX‘] and V™ ¢ RLX7 represent the

activation matrices for approximating Y(“‘“Se) and Y™,
respectively. BS-ILRMA employs two ILRMAS one is
applied to the noise sample :B(m,’“e) to estimate W " and

yi’}o'ge), and the other one is apphed to the noisy speech

signal a:?;‘ix) to estimate W™ and yg;lix). The important
point is that the basis matrices for the noise sources, 1",
are shared between these two ILRMAs, and all the vari-
ables in these models are simultaneously optimized. Since
the shared basis matrices T, must represent similar spec-
tra in both 2" and "™, the noise spectral patterns will
be captured by T, , and the other basis matrix 7" will
consequently represent spectral patterns of the remaining
source, i.e., the target source.

The cost function of BS-ILRMA is defined as the sum
of two cost functions of ILRMA as follows:

(nome) 2
Yi 3’/ (noise)
N’ { Z Z [ (nmse) +log Z titn "y n/‘|

n'=11,j5' Zl il, n' lj'

— 2J’Zlog | det WE”Oise)|}
|y(m1x)|
4,5, (mix)
{zz[ Bl v S ]
n=1 4,j

1l n l] n
| (ml);z[ 2
Mg, NT (mix)
+ Z i 7108 Z Lit, NV, N
>t NV N

— QJZlog | det W§mix>|}, (19)

(noise)
where t;1 »/, ti, N, Vijn

of T,, T, VS,O i) "and ngx), respectlvely. The update
rules of unshared parameters are the same as those in [2].
In contrast, since it is difficult to directly minimize Eq. (19)
w.r.t. t; s, we designed the auxiliary function and mini-
mize it to obtain the local optimal solution [3].

BS-ILRMA is more effective than ILRMA for a task
to separate the ego-noise and the target source [3]. How-
ever, applying BS-ILRMA to apply to the hearing-aid sys-
tem is impractical because BS-ILRMA cannot be utilized
in a situation in which diffuse noise exists. Thus, we intro-
duce rank-constrained SCM estimation. In this paper, we
propose the introduction of BS-ILRMA to the first step of
rank-constrained SCM estimation. BS-ILRMA is a linear
filter as well as ILRMA, and we can expect that the ac-
curacy of the target speech extraction with the hearing-aid
system is improved by employing BS-ILRMA.

(mlx)

and v indicate the elements

4. Experimental Evaluation of Proposed System

The purpose of this experiment is to evaluate the sepa-
ration performance of rank-constrained SCM estimation
in which BS-ILRMA is applied as the first step for the
recorded data by our developed hearing-aid system. In the
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preliminary experiment, we investigate the efficacy of BS-
ILRMA for the hearing-aid system that we developed in
Sect. 4.1. Next, we evaluate the separation performance of
rank-constrained SCM estimation in which BS-ILRMA is
applied as the first step in Sect. 4.2.

4.1 Performance of BS-ILRMA

The performance of BS-ILRMA for the hearing-aid sys-
tem is unclear because the conditions are different from the
task of separating ego-noise and target speech, e.g., small
available data length, long-distance from microphones to
the noise source, and various interference sources. Accord-
ingly, we have to evaluate the performance of BS-ILRMA
for the hearing-aid system we developed. We compared
with the following three methods: ILRMA, SS-ILRMA,
which separates a mixture using pretrained bases obtained
by noise samples, and BS-ILRMA, which optimizes the
parameters for noise training and separation by sharing
bases. We recorded impulse response and diffuse noise in
aroom using the head-and-torso dummy we developed [8].
Figure 2 (a) shows the head-and-torso dummy, which sim-
ulates a person wearing a binaural hearing aid and holding
a smartphone. The head-and-torso dummy wears eight mi-
crophones (three microphones are attached to each ear [see
Figs. 2 (b) and (d)] and two microphones are attached to the
smartphone [see Fig. 2 (c)]), which are synchronized with
the same sampling rate. We numbered each microphone
as shown in Figs. 2 (b)—(d). Figure 3 shows the shape of
the recording room and the positions of loudspeakers. The
reverberation time of the recording room is 300 ms. The
depth, width, and height are 6.5, 5.3, and 2.6 m, respec-
tively. The distance from the head-and-torso dummy to the
loudspeaker was varied by 75, 100, and 150 cm, and the
angle was varied by —20, 0, and 20°, where 0° means the
normal to the head-and-torso dummy and the negative an-
gle means the left side. The height of the head-and-torso
dummy was set to 170 cm, and the loudspeakers were set
in front of the head-and-torso dummy to mimic the situ-
ation of conversation. The target speech is a female ut-
terance from the JNAS database [11] convolved with the
impulse response, which is down-sampled from 48 kHz
to 16 kHz. We provided a two-second noise period be-
fore the utterance for the training of SS-ILRMA and BS-
ILRMA. The hamming window was used (64 ms in length
and 50% overlap) in STFT. The observed signal was gen-
erated by mixing the recorded diffuse noise and the target
signal at the input SNRs of —10, —5, and 0 dB. The num-
bers of bases and iterations of ILRMA, SS-ILRMA, and
BS-ILRMA were set to 10 and 50, respectively. As the
noise pretraining for SS-ILRMA, the pretrained basis was
optimized by 50 update iterations. The observed signal
was preprocessed by sphering transformation by principal
component analysis. The demixing matrix was initialized
as the identity matrix, and the basis and activation matrices
were initialized by nonnegative random values. We used
source-to-distortion ratio (SDR) improvement [12] as the
objective measurement criterion and averaged the scores
of each direction and ten initialization trials using different



Figure 2.

(a) Overall view of head-and-torso dummy,
(b) right-ear microphone array, (c) smartphone micro-
phones, and (d) left-ear microphone array.

random values.

The results are shown in Fig. 4. The improvements
of BS-ILRMA are greater than those of ILRMA and SS-
ILRMA in almost all cases. From the results, BS-ILRMA
is expected to be effective for the preprocessing of rank-
constrained SCM estimation.

4.2 Performance of BS-ILRMA Applied to
Rank-Constrained SCM Estimation

Next, we compare the performances when the rank-
constrained SCM estimation is preprocessed by ILRMA,
SS-ILRMA, and BS-ILRMA. The experimental condition
was the same as that described in Sect. 4.1. The shape
parameter « and the scale parameter S for the inverse
gamma distribution, which is the prior distribution of rank-
constrained SCM estimation, were set to 20 and 10716,
respectively. Since we have determined that the rank-
constrained SCM estimation can achieve high separation
performance with few iterations, the parameters were op-
timized with only two iterations of the parameter update
calculation [8].

Figure 5 shows the results of rank-constrained SCM es-
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2.8 m

3.3 my¥

>6.5 m

Figure 3. Shape of recording room and positions of loud-
speakers (mouth position of conversation partner).

timation preprocessed by ILRMA, SS-ILRMA, and BS-
ILRMA. We confirmed that rank-constrained SCM es-
timation clearly improves the SDR. In particular, rank-
constrained SCM estimation preprocessed by BS-ILRMA
achieves the greatest average SDR improvement among the
methods analyzed in almost all cases. Furthermore, the
scores of rank-constrained SCM estimation depend on the
scores of the preprocessing method.  From the results,
we consider that BS-ILRMA is suitable for the parameter
initialization of rank-constrained SCM estimation.

5. Conclusion

In this study, we investigated the efficacy of BS-ILRMA
and rank-constrained SCM estimation preprocessed by
BS-ILRMA for our developed hearing-aid system. In
the first experimental evaluation, we confirmed that BS-
ILRMA is effective in comparison with ILRMA and SS-
ILRMA for the hearing-aid system in terms of separation
performance. The second experimental evaluation showed
that rank-constrained SCM estimation preprocessed by
BS-ILRMA can achieve high-quality separation perfor-
mance. As a future work, we extend rank-constrained
SCM estimation to be a semi-supervised fashion.
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Figure 4. Average SDR improvements of ILRMA, SS-
ILRMA, and BS-ILRMA under each input SNR condition.
Three figures show results when distance from head-and-
torso dummy to target source is set to (a) 75, (b) 100, and
(c) 150 cm, respectively.
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