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Abstract 

This paper proposes novel methods for extracting a single Speech signal of Interest (SOI) from a multichan-
nel observed signal in underdetermined situations, i.e., when the observed signal contains more speech signals 
than microphones. It focuses on extracting the SOI using prior knowledge of the SOI’s Direction of Arrival (DOA). Con-
ventional beamformers (BFs) and Blind Source Separation (BSS) with spatial regularization struggle to suppress inter-
ference speech signals in such situations. Although Switching Minimum Power Distortionless Response BF (Sw-MPDR) 
can handle underdetermined situations using a switching mechanism, its estimation accuracy significantly decreases 
when it relies on a steering vector determined by the SOI’s DOA. Spatially-Regularized Independent Vector Extrac-
tion (SRIVE) can robustly enhance the SOI based solely on its DOA using spatial regularization, but its performance 
degrades in underdetermined situations. This paper extends these conventional methods to overcome their limita-
tions. First, we introduce a time-varying Gaussian (TVG) source model to Sw-MPDR to effectively enhance the SOI 
based solely on the DOA. Second, we introduce the switching mechanism to SRIVE to improve its speech enhance-
ment performance in underdetermined situations. These two proposed methods are called Switching weighted 
MPDR (Sw-wMPDR) and Switching SRIVE (Sw-SRIVE). We experimentally demonstrate that both surpass conventional 
methods in enhancing the SOI using the DOA in underdetermined situations.

Keywords  Speech enhancement, Underdetermined situations, Switching mechanism, Time-varying Gaussian 
distribution

1  Introduction
This paper addresses multichannel speech enhancement 
methods that can extract a single Speech signal of Inter-
est (SOI) from multiple microphone inputs when the 
inputs may be contaminated by an unknown number of 
interference speech signals. This task becomes particu-
larly challenging in underdetermined situations where 
the captured speech signals outnumber the microphones. 

In such a case, the SOI’s Direction of Arrival (DOA) 
serves as a useful clue for identifying the SOI. We refer 
to speech enhancement based on the DOA as DOA-
informed speech enhancement. One scenario for apply-
ing DOA-informed speech enhancement is recording an 
SOI using a limited number of microphones attached to 
a mobile device, such as a smartphone or smart glasses, 
and estimating the DOA from a camera embedded in the 
device. The objective of this paper is to develop a supe-
rior DOA-informed speech enhancement technique in 
underdetermined situations.

Two major approaches can be used for DOA-informed 
speech enhancement: beamforming  [1, 2] and Blind 
Source Separation (BSS) with spatial regularization  [3].
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Beamforming is a useful approach for DOA-informed 
speech enhancement  [2]. Among various beamform-
ers (BFs), a Minimum Variance Distortionless Response 
BF (MVDR)  [1] is one state-of-the-art example. It esti-
mates a spatial filter that can suppress signal space domi-
nated by interference speech signals. The estimated filter 
keeps the SOI unchanged according to a distortionless 
constraint based on given Acoustic Transfer Functions 
(ATFs) from the SOI to microphones. Two methods 
are widely used to estimate the ATFs: one using SOI’s 
DOA based on the plane-wave assumption (hereafter 
denoted as DOA-based ATFs) [1, 2] and the other using 
voice activity detection [4]. This paper adopts the former 
method because the latter method struggles to detect 
the SOI’s voice activity when there are several interfer-
ence speakers. To estimate the spatial filter, however, 
MVDR requires Spatial Covariance Matrices (SCMs) of 
the interferences (interference SCMs). When the inter-
ferences contain speech signals, it is challenging to accu-
rately estimate the interference SCMs by distinguishing 
the interferences from the SOI in the mixture.

In contrast, a Minimum Power Distortionless Response 
BF (MPDR) [1] can estimate spatial filters without using the 
interference SCMs. MPDR estimates a filter that minimizes 
the power of the microphone observation while retaining 
the SOI using a distortionless constraint similar to MVDR.

Although MPDR performs speech enhancement with-
out interference SCMs, their interference suppression is 
limited in underdetermined situations  [5, 6]. For exam-
ple, MPDR struggles to effectively suppress all the N − 1 
interference speech signals when we have only M(< N ) 
microphones, where N is the number of speech signals. 
Researchers have proposed a switching mechanism  [5–
10] to overcome this limitation. With the mechanism, 
we cluster time frames of the microphone signals so 
that each cluster contains a relatively small number of 
sources. Then, we estimate and apply different spatial fil-
ters to the respective clusters separately. This can also be 
interpreted as using a time-varying filter, where we esti-
mate and apply different spatial filters to individual time 
frames based on the clustering results. This approach can 
achieve interference suppression more effectively than 
simply applying a single time-invariant filter to a whole 
captured signal because each cluster contains fewer 
sources than a whole signal. The switching mechanism 
was originally introduced into MPDR to handle underde-
termined situations [6]. This paper refers to the method 
as switching MPDR (Sw-MPDR).

One serious drawback of Sw-MPDR  [6] (and MPDR) is 
that it is sensitive to errors in the estimated ATFs. In par-
ticular, the speech enhancement performance degrades 
when the ATFs are estimated using the SOI’s DOA. No mat-
ter how accurate the DOA is, the DOA-based ATFs contain 

only direct path components. Thus, such BFs may suppress 
the early reflections of the SOI, even if we use a distortion-
less constraint. Since early reflections amplify the SOI in the 
observations, largely reducing these reflections can lead to 
a substantial degradation in speech enhancement. To miti-
gate this degradation, a BF must be developed that effec-
tively performs speech enhancement even with DOA-based 
ATFs. Hereafter, we deal with the lack of multipath compo-
nents in DOA-based ATFs as the modeling errors of ATFs.

In contrast, it may be worth noting that a variation of 
MPDR, weighted MPDR (wMPDR) [11–13], can perform 
speech enhancement better than MPDR even with the 
modeling errors of ATFs. wMPDR estimates a spatial filter 
so that its outputs follow a time-varying Gaussian (TVG) 
with time-varying variances based on the Maximum Like-
lihood Estimation (MLE). The MLE used by wMPDR is 
shown equivalent to minimizing the power of the observed 
signal normalized by the time-varying variance of the SOI. 
Accordingly, wMPDR can estimate the spatial filter that 
mainly reduces the interferences appearing in the SOI-
absent periods while retaining the SOI and its reflections.

On the other hand, we can create a DOA-informed 
speech enhancement method by introducing spatial 
regularization to BSS. BSS is a technique that separates 
individual source signals from microphone observations 
without prior information of the signals or the room 
acoustics. In contrast, spatial regularization guides BSS 
to separate the SOIs corresponding to specified DOAs.

Independent Component Analysis (ICA)  [14] is a BSS 
algorithm that estimates spatial filters as those that maxi-
mize the independence between separated signals. To apply 
ICA to time-frequency domain audio signals, Independent 
Vector Analysis (IVA)  [15–17] was proposed; it separates 
sources across all frequencies using frequency-independent 
probabilistic source models. Based on IVA, Independent 
Vector Extraction (IVE) [18–20] was developed to separate 
N (< M) sources (i.e., solving a BSS problem in overdeter-
mined situations) in a computationally efficient way.

Since BSS can only estimate a specified number of 
sources, additional techniques are necessary to deter-
mine which sources correspond to the SOIs. Spatial regu-
larization [3] can be used for this purpose. For example, 
IVA with spatial regularization, called Spatially-Regular-
ized IVA (SRIVA) [21–24], estimates the spatial filters by 
considering both the BSS objective and the spatial regu-
larization to determine the SOIs. Spatial regularization 
has also been incorporated into IVE (SRIVE) [23]. SRIVE 
can extract only the SOIs by dealing with the other 
sounds collectively as a noise signal. Spatial regulariza-
tion has been experimentally proven to be effective even 
with DOA-based ATFs [21–26]. Therefore, SRIVE can be 
a useful method for DOA-informed speech enhancement 
when the number of SOIs is limited to one.
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One issue in SRIVE is that it requires more micro-
phones than sources to achieve accurate speech 
enhancement. To overcome this issue, switching IVE 
(Sw-IVE) [10] was proposed by incorporating the switch-
ing mechanism that was first introduced to MPDR into 
IVE. However, previous research derived an optimiza-
tion algorithm only for cases with M ≥ N  (i.e., deter-
mined and overdetermined situations). Thus, it cannot be 
applied to underdetermined situations.

Table 1 summarizes the advantages and disadvantages 
of the conventional methods. In short, none of the con-
ventional DOA-informed speech enhancement methods 
based on beamforming and BSS can simultaneously solve 
the following two problems1: 

1)	 Robust speech enhancement against modeling errors 
of ATFs (included in DOA-based ATFs).

2)	 Accurate speech enhancement in underdetermined 
situations

As the main contributions of this paper, we propose 
two DOA-informed speech enhancement methods that 
feature the following aspects:

•	 We introduce a TVG source model into Sw-MPDR [6] 
to improve its speech enhancement performance when 
using DOA-based ATFs. The extended method is 
called Switching wMPDR (Sw-wMPDR).

•	 We introduce a switching mechanism to SRIVE [23] 
to improve its speech enhancement performance in 
underdetermined situations. The extended method is 
called Sw-SRIVE.

Table 1 also shows the advantages of the proposed meth-
ods over the conventional methods.

First, with Sw-wMPDR, we cluster the time frames and 
estimate spatial filters for individual clusters based on 

MLE, assuming that the SOI follows a TVG distribution. 
Here, similar to wMPDR  [11–13], we expect that using 
the TVG source model increases the robustness of the 
switching BF’s speech enhancement when there are mod-
eling errors in ATFs, and thus we can solve the above-
mentioned problem 1 of Sw-MPDR.

Next, with Sw-SRIVE, we cluster the time frames and 
estimate the spatial filters for individual clusters based 
on the BSS objective with spatial regularization. The 
switching mechanism enables Sw-SRIVE to suppress 
interferences more effectively than SRIVE [23] in under-
determined situations, and thus we can solve the above-
mentioned problem 2 of SRIVE.

In addition, we propose two new techniques to improve 
the performance of Sw-SRIVE. The first is robust cluster-
ing of time frames in underdetermined situations. Con-
ventionally, IVE and its extensions assume that all the 
noise signals (other than the SOIs) follow a stationary 
Gaussian distribution. However, those signals become 
non-stationary when the observed signal includes inter-
ference speech signals. Our preliminary experiments 
showed that this mismatch degrades the clustering of time 
frames by Sw-SRIVE. To avoid that problem, we introduce 
a clustering technique that is robust against the errors in 
the assumption.

The second new technique aims to stabilize the optimi-
zation of Sw-SRIVE. Instability in the optimization arises 
with Sw-SRIVE when a specific cluster is composed of only 
an insufficient number of time frames. To avoid this prob-
lem, we use a single-state IVE objective to regularize the 
optimization. We call this technique state regularization.

In experiments, we show how our proposed methods 
outperform the conventional methods in underdeter-
mined situations using different numbers of speech signals. 
In addition, we show that the above robust clustering and 
state regularization improve the speech enhancement per-
formance of Sw-SRIVE.

This paper is an extended version of our conference 
papers, which proposed spatially-regularized switching 
IVA (Sw-SRIVA)  [27] and Sw-wMPDR  [28]. The exten-
sion presented in this paper includes the following: 

Table 1  Comparison of DOA-informed speech enhancement methods

Methods Robustness against modeling errors of ATFs (included in 
DOA-based ATFs)

Accuracy of speech 
enhancement in 
underdetermined situations

MPDR [1] Low Low

Sw-MPDR [6] Low High

wMPDR [11–13] High Low

SRIVE [23] High Low

Sw-wMPDR [proposed] High High

Sw-SRIVE [proposed] High High

1  We discuss DNN-based approaches in the next section.
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1.	 Extension of Sw-SRIVA to Sw-SRIVE, including 
robust clustering for Sw-SRIVE to handle underde-
termined situations in Section 5.3 and state regulari-
zation for Sw-SRIVE’s stable parameter optimization 
in Section 5.4.

2.	 Thorough discussion of the effectiveness of utilizing 
the TVG source model for DOA-informed speech 
enhancement in Section 4.3 and its experimental val-
idation in Section 7.2.

2 � Related work
A super-directive beamformer can be applied to DOA-
informed speech enhancement  [29]. It assumes an 
isotropic noise field where the noise comes to micro-
phones from arbitrary directions with equal power and 
determines the noise SCM based on this assumption. 
Although this method can perform DOA-based speech 
enhancement without prior knowledge of the noise sta-
tistics, the performance degrades in an underdetermined 
situation because it largely deviates from the isotropic 
noise field. In contrast, wMPDR and Sw-wMPDR can 
adapt to the characteristics of the noise in the observed 
signal and thus more effectively reduce it.

BSS enhances speech signals including an SOI without 
DOA by separating the microphone signals into individ-
ual signals  [14–17, 30, 31]. However, BSS requires prior 
knowledge of the number of speech signals captured by 
microphones. Moreover, post-processing is necessary to 
determine the SOI from the separated signals. On the 
other hand, our proposed methods, Sw-wMPDR and Sw-
SRIVE, do not require post-processing or information 
about the number of speech signals.

A method was proposed to enhance an SOI by estimat-
ing its mask with its DOA and leveraging the mask for 
spatial filter estimation  [32]. The method uses a Neural 
Network (NN) to estimate the SOI’s mask based on pairs 
of microphone observations and the DOA. However, this 
method does not fit the goal of this paper well in the fol-
lowing aspects. The method’s effectiveness has only been 
experimentally confirmed in determined situations where 
the observed signals involve two speakers. In addition, the 
observed signals are generated using the image method [33]. 
The image method introduces mismatches compared to 
real-world environments. NNs tend to suffer from reduced 
estimation accuracy when there are mismatches between 
training and testing data. Moreover, the NNs come with 
high computational costs and specialized hardware require-
ments. In contrast, we propose methods for underde-
termined situations, typically involving more than two 
speakers, and conduct experiments using impulse responses 
recorded in real environments. It may be worth noting that 
the performance of model-based approaches degrades with 
mismatches between the model and the data. To establish 

model-based approaches that are more adaptable to the 
data, this paper proposes methods using the time-varying 
source model and the switching mechanism.

3 � Problem formulation
This paper considers a multi-input single-output speech 
enhancement that estimates a source image of the SOI at 
the first microphone. We assume that the reverberation 
time is not so large in this paper2.

Suppose that an SOI s(f, t) and interference speech sig-
nals un(f , t) for n = 1, . . . ,N − 1 are mixed and captured 
by M microphones. We represent observed signal x(f , t) 
at each time frame indexed by t = 1, . . . ,T  and frequency 
bin indexed by f = 1, . . . , F  in the Short-Time Fourier 
Transform (STFT) domain as

where (·)T denotes the transpose. We model the observed 
signal x(f , t) by

where h(f ) is the ATF of the SOI from the source location 
to the microphones, hn(f ) is that of the nth interference, 
and r(f , t) is the ambient noise.

We also suppose that we have an estimate of the SOI’s 
ATF (hereafter called a steering vector to be distin-
guished from a true ATF). Assuming that the SOI’s DOA 
and the microphone locations are given or estimated, 
we obtain steering vector a(f ) based on the plane-wave 
assumption and relative Time Delays of Arrival (TDOA) 
τ = [τ1, . . . , τM]T ∈ R

M from the SOI to M microphones:

where each element am(f ) is an estimate of an ATF from 
an SOI to the mth microphone and NF is the number 
of points used for STFT. This paper defines the number 
of frequency bins F as NF/2+ 1 . Equation  (3) normal-
izes the norm of steering vector a(f ) to a constant ( = 1 ) 
because otherwise the value of the spatial regularization 
term (see (31) below) changes with the norm. Note that 
a(f ) contains substantial errors from true ATFs h(f ) in 
(2) because a(f ) only contains a direct path component 
without any reflection paths.

(1)x(f , t) = [x1(f , t), . . . , xM(f , t)]T ∈ C
M ,

(2)

x(f , t) = h(f )s(f , t)+
N−1

n=1

hn(f )un(f , t)+ r(f , t),

(3)
a(f ) = [a1(f ), . . . , aM(f )]T ∈ C

M

= 1√
M

exp

(

−2π
(f − 1)

NF
τ
√
−1

)

,

2  Although it might be possible to incorporate (e.g.,) dereverberation to 
adapt to long reverberation  [7, 9], this paper relegates this task to future 
work.
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Because this paper aims to obtain a source image of the 
SOI at the first microphone, we set τ1 = 0.

3.1 � Estimation model
This section describes two important estimation models: 
a separation model with a switching mechanism and a 
source model. Both are used in our proposed methods in 
Sections 4 and 5.

3.1.1 � Separation model with switching mechanism
To obtain an estimate of SOI ŝ(f , t) , we use a switch-
ing mechanism, which is also used in Sw-MPDR and Sw-
IVE [6, 9, 10]. With this mechanism, J separation matrices, 
Wj(f ) for 1 ≤ j ≤ J , are applied to the observed signal to 
yield J different sets of SOI ŝj(f , t) ∈ C and noise signals 
ẑj(f , t) ∈ C

M−1:

This paper refers to wj,1(f ) as a spatial filter and Wj,Z(f ) 
as a noise filter. Note that although we do not aim to obtain 
an estimate of noise signal ẑj(f , t) , both Sw-wMPDR and 
Sw-SRIVE use the model (4) to derive optimization criteria 
for spatial filter wj,1(f ) . Then, one of the J separated sources 
is selected as the final output for each time frequency:

The selection is implemented using a time-frequency 
dependent switching weight δj(f , t) in (6), which takes a 
binary value. Hereafter, j and J are referred to as an index of 
a switching state and the total number of states, respectively.

The switching mechanism assumes that time frames of 
the observed signal can be clustered into several groups, 
each containing fewer sources than microphones, even 
when the entire observation contains more sources than 
microphones, i.e., in an underdetermined situation. 
Accordingly, we can achieve more effective interference 
suppression by clustering the time frames effectively and 
applying different spatial filter to each cluster, rather than 
applying a single time-invariant filter to the entire obser-
vation. Although the separation model of the switching 
mechanism can be viewed as a time-varying separation 

(4)
[
ŝj(f , t)
ẑj(f , t)

]

= WH
j (f )x(f , t) for 1 ≤ j ≤ J ,

(5)
Wj(f ) = [wj,1(f ),wj,2(f ), . . . ,wj,M(f )]

= [wj,1(f ),Wj,Z(f )] ∈ C
M×M .

(6)

[
ŝ(f , t)
ẑ(f , t)

]

︸ ︷︷ ︸

ŷ(f ,t)

=
J∑

j=1

δj(f , t)

[
ŝj(f , t)
ẑj(f , t)

]

,

(7)
J∑

j=1

δj(f , t) = 1 and δj(f , t) ∈ {0, 1}.

model defined as W (f , t) =
∑

j δj(f , t)W j(f ) , its goal 
is completely different from that of conventional online 
processing such as [26, 34]. Conventional online process-
ing updates the statistics of the signals at each time frame 
with a certain forgetting factor, assuming that the signal 
is stationary for a certain period prior to the frame. How-
ever, such methods cannot handle the problem discussed 
in this paper because active sources (or signal statistics) 
change quickly from frame to frame in the underdeter-
mined situation. In contrast, the switching mechanism 
can handle such situations simply by switching the filter.

In this paper, steering vector a(f ) in (3) will be used 
to define distortionless and blocking constraints in Sw-
wMPDR (Section  4) and to specify spatial regulariza-
tion in Sw-SRIVE (Section  5), for estimating spatial 
filter wj,1(f ) and noise filter Wj,Z(f ) in (5). The switch-
ing mechanism (6), on the other hand, is used to cluster 
time-frequency bins into a fixed number of clusters and 
to estimate wj,1(f ) and Wj,Z(f ) separately for each cluster.

3.1.2 � Source model
To estimate Wj(f ) and δj(f , t) , we use the following model 
and assumption, both of which are also used in wMPDR 
and SRIVE [13, 23].

First, we use the TVG source model where the 
extracted SOI ŝ(f , t) adheres to the following distribution:

where v(f , t) is a time-varying source variance of ŝ(f , t).
Next, we assume that SOI ŝ(f , t) and noise signals ẑ(f , t) 

are mutually independent over all times and frequencies:

Based on the above TVG source model and Appendix, 
we can derive a negative log-likelihood function for a 
given observed signal X = {xm(f , t)}m,f ,t:

where W = {Wj(f )}j,f  , V = {v(f , t)}f ,t , D = {δj(f , t)}j,f ,t , 
and c= denotes the equality up to the constant terms. 
Although the right hand side of (10) does not explicitly 
include xm(f , t) , xm(f , t) is implicitly included via ŝj(f , t) 
and ẑj(f , t) according to (4). Hereafter, this likelihood 

(8)
p(ŝ(f , t)) = NC(0, v(f , t))

= 1

πv(f , t)
exp

(

−|ŝ(f , t)|2
v(f , t)

)

,

(9)p({ŝ(f , t), ẑ(f , t)}f ,t) =
∏

f ,t

p(ŝ(f , t))p(ẑ(f , t)).

(10)

LNL(X ;W ,V ,D)

c=
∑

j,f ,t

δj(f , t)

(

−2 log | detW j(f )|

+ log v(f , t)+ |ŝj(f , t)|2
v(f , t)

− log p(ẑj(f , t))

)

,
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function is utilized for estimating W and D and obtaining 
a source image of the SOI.

In the next section, we present two proposed methods 
by introducing additional conditions (e.g., constraints 
and regularization) to the likelihood function (10). Spe-
cifically, the new conditions use the DOA-based ATFs to 
determine the SOI from the mixture.

4 � Proposed method: Switching weighted MPDR 
(Sw‑wMPDR)

In this section, we extend the conventional Sw-MPDR [6] to 
our proposed method, Sw-wMPDR. Based on the switch-
ing mechanism, Sw-wMPDR can handle underdetermined 
situations well. In addition, the TVG source model makes 
Sw-wMPDR perform more effectively than Sw-MPDR for 
DOA-informed speech enhancement. After defining the 
cost function in Section  4.1, we derive a parameter opti-
mization algorithm of Sw-wMPDR based on MLE in Sec-
tion 4.2. We describe how the TVG source model supports 
DOA-informed speech enhancement in Section 4.3.

4.1 � Cost function of Sw‑wMPDR
In addition to the estimation models introduced in Sec-
tion  3.1, we introduce the following constraints for 
∀j and f  to spatial filter wj,1(f ) and noise filter Wj,Z(f ):

where 0M ∈ R
M is a zero vector. Equation  (11) is a dis-

tortionless constraint that makes spatial filter wj,1(f ) 
respond with value 1 to steering vector a(f ) . Based on 
(12), Wj,Z(f ) becomes a blocking matrix that cancels the 
signal space spanned by a(f ) . Also, (13) assumes that 
noise filter Wj,Z(f ) has the same value in each state j3.

Using the constraints and disregarding constant terms 
unrelated with WS = {wj,1(f )}j,f  , V , and D , we can 
rewrite the negative log-likelihood function in (10) as 
Sw-wMPDR’s cost function CSw-wMPDR with distortion-
less constraint [28, 35]:

Note that detW j(f ) = detW j′(f ) and ẑj(f , t) = ẑj′(f , t) 
hold for ∀j and j′ according to previous papers  [28, 35] 

(11)wH
j,1(f )a(f ) = 1,

(12)WH
j,Z(f )a(f ) = 0M−1,

(13)Wj,Z(f ) = W j′,Z(f ) for ∀j, j′,

(14)

CSw-wMPDR(X ;WS,V ,D)

c=
∑

j,f ,t

δj(f , t)

(

log v(f , t)+ |ŝj(f , t)|2
v(f , t)

)

s.t. wH
j,1(f )a(f ) = 1 for ∀f , j.

and (11)–(13), thus we can disregard the first and last 
terms (i.e., −2 log | detW j(f )| and − log p(ẑj(f , t)) ) in the 
parentheses of (10).

4.2 � Optimization algorithm of Sw‑wMPDR
Based on the above cost function, we can find a local opti-
mum of the parameters by alternately updating one of WS , 
D , and V while fixing the other parameters. After initializ-
ing D and V at certain values for all j, f , and t , we iterate 
the following updates until a convergence is obtained:

where �j(f ) is an SCM of the observed signal for each 
state j normalized by time-varying source variance v(f , t) . 
The normalization is derived from the MLE based on the 
TVG source model.

4.3 � Effectiveness of TVG source model for SOI 
enhancement

We now explain why the TVG source model is useful for 
DOA-informed speech enhancement. The key charac-
teristic is that Sw-wMPDR (similar to wMPDR [11–13]) 
minimizes the power of the observed signal normalized 
by the power estimated by the TVG source model.

Before discussing Sw-wMPDR, let us discuss the tenden-
cies of MPDR and MVDR. MPDR minimizes the power of 
the observed signal under the distortionless constraint to 
optimize the spatial filter wj,1(f ) . Here, an SOI is included 
in the signal to be minimized. Thus, parts of the SOI that 
are not protected by the DOA-based ATF are significantly 
suppressed. Typically, early reflections are among the parts 
suppressed by MPDR. As we explained in the introduction, 

(15)�j(f ) =
T∑

t=1

δj(f , t)

v(f , t)
x(f , t)xH(f , t),

(16)wj,1(f ) ←
�

−1
j (f )a(f )

aH(f )�−1
j (f )a(f )

,

(17)δj(f , t) ←
{

1 if j = argmin
j′

|wH

j′,1(f )x(f , t)|2

0 otherwise
,

(18)v(f , t) ←
J∑

j=1

δj(f , t)|wH
j,1(f )x(f , t)|2,

3  We might realize better speech enhancement by formulating the noise fil-
ter to be state-dependent. However, to the best of our knowledge, it is dif-
ficult to derive a computationally efficient optimization algorithm with the 
formulation and based on the estimation model introduced in this paper. 
Thus, we used an assumption (13) to derive the computationally efficient 
Sw-wMPDR.
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excessive reduction of early reflections leads to a substantial 
degradation in speech enhancement. In contrast, MVDR 
minimizes the power of the interferences. Here, the SOI is 
not included in the signal to be minimized. Thus, MVDR 
can be relatively robust against the ATF modeling errors 
caused by using a DOA-based ATF.

Sw-wMPDR has robustness against ATF modeling 
errors similar to MVDR. Sw-wMPDR minimizes (14) 
to optimize wj,1(f ) . During the iterative optimization, 
wj,1(f ) for a state j and at a frequency f is updated while 
fixing δj(f , t) and v(f , t) . Specifically, this is done by mini-
mizing the following function under the distortionless 
constraint ( wH

j,1(f )a(f ) = 1):

In other words, Sw-wMPDR minimizes the power 
of the observed signal normalized by its estimated 
power  v(f , t) . Due to this weighting mechanism, Sw-
wMPDR tends not to suppress signals in frames with 
larger v(f , t) . Because the direct signal is protected by 
the distortionless constraint with the DOA-based ATF, 
the estimated power v(f , t) becomes relatively larger dur-
ing SOI-present frames than during SOI-absent frames. 
In addition, most of the early reflections of an SOI are 
included in the same time frames as those of their direct 
signal. As a result, Sw-wMPDR tends not to suppress the 
early reflections even when we use a DOA-based ATF as 
the distortionless constraint.

During the optimization using the TVG source model, 
v(f , t)  can become zero or an extremely small value at a 
frame. This makes the SCM �j(f ) in (16) unstable. Thus, 
setting an appropriate floor of v(f , t)  is essential for Sw-
wMPDR to work effectively with DOA-based ATFs. In this 
paper, we apply flooring after (18):

where ǫfloor is a flooring coefficient and �x�22 = xHx.
In Section 7, we experimentally confirm that Sw-wMPDR 

ourperforms Sw-MPDR  [6] using the TVG source model 
with flooring.

5 � Proposed method: Switching SRIVE (Sw‑SRIVE)
In this section, we extend the conventional SRIVE  [23] 
to our proposed method, Sw-SRIVE. Based on the 
switching mechanism, Sw-SRIVE can improve its speech 

(19)

CSw-wMPDR(wj,1(f ))
c=

∑

t

δj(f , t)
|wH

j,1(f )x(f , t)|2

v(f , t)
.

(20)v(f , t) ←
{
v(f , t) if v(f , t) > ǫ(f )
ǫ(f ) otherwise

,

(21)ǫ(f ) = ǫfloor

TM

T∑

t=1

�x(f , t)�22,

enhancement performance to surpass SRIVE. In addi-
tion, Sw-SRIVE uses spatial regularization instead of a 
distortionless constraint. While a distortionless con-
straint is a hard constraint that makes a spatial filter 
have a specific response regardless of the accuracy of the 
steering vector, spatial regularization is a soft constraint 
in which we can control the strength of the constraint 
by tuning its weight. This soft constraint makes Sw-
IVE [10] robust even when the DOA-based steering vec-
tor deviates from the true ATF. After defining the cost 
function in Section 5.1, we derive the parameter optimi-
zation algorithm of Sw-SRIVE in Section  5.2. Then, we 
propose a robust clustering technique to perform Sw-
SRIVE effectively in Section  5.3. Finally, we introduce 
state regularization for SRIVE’s stable parameter optimi-
zation in Section 5.4.

5.1 � Cost function of Sw‑SRIVE
In addition to the estimation models introduced in Sec-
tion 3.1, we assume that the extracted noise signal ẑj(f , t) 
adheres to a multivariate stationary complex Gaussian dis-
tribution at each j [10]:

where �j(f ) ∈ C
(M−1)×(M−1) is a covariance matrix of 

ẑj(f , t) . Under the above assumption, negative log-likeli-
hood function LNL without spatial regularization in (10) 
can be rewritten as LSw-IVE:

where � = {V ,D,W ,O} , O = {�j(f )}j,f  , and θj(f , t) =
(W j(f ),�j(f ), v(f , t)) . It may be worth noting that 
L(θj(f , t)) corresponds to the negative log-likelihood 
function of IVE (without switching or spatial regulariza-
tion). Thus, (23) can be viewed to switch the IVE’s like-
lihood functions with different state parameters θj(f , t) 
using switching weight δj(f , t).

For Sw-IVE [10], it is difficult to determine which source 
is the SOI to be extracted when more than one source is 
included in the observed signal. To identify the SOI, Sw-
SRIVE leverages the spatial regularization for the spatial 
filter estimation.

(22)

p(ẑj(f , t)) = NC(0M−1,�j(f ))

= π−(M−1)

det�j(f )
exp

(

−ẑ
H

j (f , t)�
−1
j (f )ẑj(f , t)

)

,

(23)LSw-IVE(X ;�)
c=

∑

j,f ,t

δj(f , t)L(θj(f , t)),

(24)

L(θj(f , t)) = −2 log
∣
∣detWj(f )

∣
∣

+ log v(f , t)+ |ŝj(f , t)|2
v(f , t)

+ log det�j(f )

+ ẑ
H

j (f , t)�
−1
j (f )ẑj(f , t),
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As discussed in [20], IVE and Sw-IVE are unable to 
uniquely determine noise signals ẑj(f , t) and noise filter 
Wj,Z(f ) . This ambiguity could potentially have a detrimen-
tal impact on the regularization process  [26]. To address 
this problem, we define a cost function that merges the 
regularization term with the likelihood function in a trans-
formed domain. In this domain, the estimated noise signal 
adheres to a complex Gaussian distribution with the mean 
of zero vector, 0M−1 and a constant covariance of identity 
matrix IM−1 ∈ R

(M−1)×(M−1):

where z̃j(f , t) is the transformed noise signal. The trans-
formed domain does not have scale ambiguity for noise 
filters, which avoids the detrimental impact on the reg-
ularization process explained in [26]. Moreover, we can 
use a computationally efficient update rule [19] for noise 
filters (see (42) below). Once we obtain the cost function 
in the transformed domain, we transform it back to the 
original domain. Note that once we determine the term 
in the original domain, we do not need to transform the 
signal domain as preprocessing of Sw-SRIVE.

With this transformation, (23) and (24) can be rewritten 
without modifying its value [20]:

where θ̃j(f , t) = (W̃ j(f ), v(f , t)),

and Lj(f ) ∈ C
(M−1)×(M−1) is a matrix satisfying 

Lj(f )L
H
j (f ) = �

−1
j (f ) . For example, Lj(f ) can be deter-

mined as the Cholesky decomposition of �−1
j (f ) . The 

equality between (23) and (26) can be shown by substi-
tuting (28) and (29) into (27) followed by certain math-
ematical manipulations.

In the above-transformed domain, we define the cost 
function for Sw-SRIVE that combines the negative log-
likelihood function with a spatial regularization term 
J trans
SR (W̃Z,D):

(25)p(z̃j(f , t)) = NC(0M−1, IM−1),

(26)Ltrans
Sw-IVE(X ; �̃) =

∑

j,f ,t

δj(f , t)L
trans(θ̃j(f , t)),

(27)
Ltrans(θ̃j(f , t)) = −2 log

∣
∣det W̃ j(f )

∣
∣

+ log v(f , t)+ |ŝj(f , t)|2
v(f , t)

+ z̃Hj (f , t)z̃j(f , t),

(28)z̃j(f , t) = LHj (f )ẑj(f , t),

(29)
W̃ j(f ) =

[
wj,1(f ), W̃j,Z(f )

]

=
[
wj,1(f ),Wj,Z(f )Lj(f )

]
,

(30)Ctranscost (�̃) = Ltrans
Sw-IVE(X ; �̃)+ J trans

SR (W̃Z,D),

where ˜� = {V ,D, ˜W} , ˜W = {
˜W j(f )}j,f  , and ˜WZ = {

˜Wj,Z(f )}j,f  . 
This paper adopts a regularization term used for 
SRIVE  [23] with an extension for the switching 
mechanism:

where �SR is a regularization weight. The regularization 
term in (31) forces noise filter W̃j,Z(f ) to direct a spatial 
null to steering vector a(f ) . Equation  (31) is one of the 
novelties in our paper since no paper has introduced spa-
tial regularization into Sw-IVE. A major difference from 
the regularization term for SRIVE  [23] is that we regu-
larize J noise filters using the same term with switching 
weight δj(f , t) in (31), rather than applying the term to 
only one noise filter with no switching weight.

Then, we obtain the cost function in the original 
domain by transforming (30) back to the original domain 
without modifying its value:

where

�x�2� = xH�x , and WZ = {Wj,Z(f )}j,f .
We describe the relationship between the spatial 

regularization term used here and the assumptions 
(11) and (12) used in Sw-wMPDR. The regularization 
to noise filter Wj,Z(f ) used in (34) can be considered as 
introducing a blocking matrix assumption (12) not as 
a constraint but as a regularization term. Similarly, it 
is also possible to introduce a distortionless constraint 
in (11) as a regularization term for spatial filter wj,1(f ) 
[22, 24, 26]. For the sake of simplicity, however, we do 
not adopt this type of regularization term in this paper.

5.2 � Optimization algorithm of Sw‑SRIVE
We optimize parameters � for Sw-SRIVE by minimiz-
ing the cost function in (32). Because no closed-form 
solution was obtained for the optimization, we alter-
nately update one among W , V , O , and D by fixing the 
other parameters. We iterate the update until a con-
vergence is obtained. After initializing W , D , and V at 
certain values, we iterate the updates described in the 
following.

(31)

J trans
SR (W̃Z,D) = �SR

∑

j,f ,t

δj(f , t)�W̃
H

j,Z(f )a(f )�22,

(32)Ccost(�) = LSw-IVE(X ;�)+ JSR(WZ,O,D),

(33)

JSR(WZ,O,D) = �SR

∑

j,f ,t

δj(f , t)J (W j(f ),�j(f )),

(34)J (W j(f ),�j(f )) = �WH
j,Z(f )a(f )�2�−1

j (f )
,
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The update rule for W j(f ) at each state j can be 
derived in almost the same way as that for conventional 
IVE  [19, 20]. Extracting the terms related with Wj(f ) 
from (32) yields

where

and v(t) ← 1
F

∑F
f=1 v(f , t) . Note that this paper adopts 

a frequency-independent source model only when 
updating separation matrices W , following a previously 
proposed practical technique  [9]. The frequency-inde-
pendent source model was originally utilized to IVA [15, 
16] to separate sources across all frequencies.

Since the above cost function has the same form as 
that of IVE, we can use the same optimization tech-
nique [19, 20, 23], which updates Wj(f ) with a sequence of 
wj,1(f ) → Wj,Z(f ) for j = 1, . . . , J . We update wj,1(f ) using

where e1 denotes the first column of IM . Then, we update 
Wj,Z(f ) using

where EZ is the last M − 1 columns of IM.
After updating W and obtaining signals according to 

(4) and (6), we update V and O based on the cost function 
in (32):

(35)

CWj(f ) ∝− 2 log
∣
∣detWj(f )

∣
∣

+ tr(WH
j,Z(f )�j,Z(f )Wj,Z(f )�

−1
j (f ))

+ wH
j,1(f )�j,S(f )wj,1(f ),

(36)�j,Z(f ) = �j,Z(f )+ �SRa(f )a
H(f ),

(37)�j,S(f ) =
1

Tj(f )

T∑

t=1

δj(f , t)

v(t)
x(f , t)xH(f , t),

(38)�j,Z(f ) =
1

Tj(f )

T∑

t=1

δj(f , t)x(f , t)x
H(f , t),

(39)Tj(f ) =
T∑

t=1

δj(f , t),

(40)wj,1(f ) = (WH
j (f )�j,S(f ))

−1e1,

(41)wj,1(f ) =
wj,1(f )

√

wH
j,1(f )�j,S(f )wj,1(f )

,

(42)Wj,Z(f ) ←





−
wH
j,1(f )�j,Z(f )EZ

wH
j,1(f )�j,Z(f )e1

IM−1




,

Finally, we update switching weights D by setting 
δj(f , t) = 1 for a state j that gives the minimum cost func-
tion among all states at each time frequency:

Let us briefly summarize the relationship among 
IVE [19, 20], Sw-IVE [10], SRIVE [23], and Sw-SRIVE: 

1.	 Sw-SRIVE is equivalent to SRIVE when we set the 
number of switching states J = 1 (accordingly skip-
ping the update of δj(f , t) in (45)).

2.	 Sw-SRIVE becomes Sw-IVE when setting spatial reg-
ularization weight �SR = 0.

3.	 Sw-SRIVE is reduced to IVE when dropping both the 
spatial regularization and the switching mechanism.

5.3 � Robust clustering technique for Sw‑SRIVE
Our preliminary experiments found that Sw-SRIVE 
sometimes fails to greatly outperform SRIVE when esti-
mating an SOI in underdetermined situations. One possi-
ble cause could be the erroneous assumption introduced 
in (22) that noise signals ẑj(f , t) are stationary Gaussian 
at each switching state. In underdetermined situations, 
ẑj(f , t) tends to be non-stationary since they include 
interference speech signals. This model mismatch 
degrades the SOI estimation when we update switching 
weights δj(f , t) depending on noise covariance matrix 
�j(f ) in (22). Thus, to mitigate the dependency, we intro-
duce a technique that updates δj(f , t) by dropping the 
terms related with �j(f ) from the cost function in (32):

where

Equation  (47) updates switching weights δj(f , t) with-
out the influence from the erroneous estimation of 

(43)v(f , t) ← |ŝ(f , t)|2,

(44)�j(f ) ← WH
j,Z(f )�j,Z(f )Wj,Z(f ).

(45)δj(f , t) ←
{

1 if j = argmin
j′

C(θj′(f , t))

0 otherwise
,

(46)C(θj′(f , t)) = L(θj′(f , t))+ J (W j′(f ),�j′(f )).

(47)

δj(f , t) ←
{

1 if j = argmin
j′

L+(W j′(f ), v(f , t))

0 otherwise
,

(48)
L+(W j(f ), v(f , t)) = −2 log

∣
∣detWj(f )

∣
∣

+ log v(f , t)+ |ŝj(f , t)|2
v(f , t)

.
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�j(f ) , which can happen in underdetermined situations 
as denoted in this section. As a consequence, δj(f , t) is 
updated based mainly on terms related to the SOI. Thus, 
(47) is more robust against the erroneous estimation of 
�j(f ) than (45). We refer to the clustering performed by 
(47) as robust clustering and Sw-SRIVE adopting it as 
Sw-SRIVE+.

5.4 � State regularization for Sw‑SRIVE
Although Sw-SRIVE and Sw-SRIVE+ estimate the SOI 
more accurately than SRIVE, they sometimes suffer from 
unstable optimization. After updating δj(f , t) using (45) 
or (47), the number of frames Tj(f ) assigned to a certain 
state j can be very small. This makes the parameter opti-
mization unstable.

To avoid the above problem, this paper introduces state 
regularization. In concrete, we use the following cost 
function for the parameter optimization, in which the 
last term is newly added to (32):

The last term in (49) is a state regularization term. 
This term is defined as the sum of the negative log-like-
lihood function of IVE, L(θj(f , t)) , for all states j, multi-
plied by weight �state . Since this term does not consider 
any switching mechanism, the likelihood value for the 
parameters of each state j is evaluated across all time 
frames. If we assign a relatively small weight to �state , 
the regularization term becomes insignificant in the 
cost function for a state including a substantial number 
of time frames. Conversely, for a state that includes a 
minimal number of time frames, the term LSw-IVE(X ;�) 
becomes insignificant, and the regularization term pri-
marily influences the cost function. By considering both 
terms, we can ensure the stability of Sw-SRIVE’s opti-
mization, regardless of the number of time frames con-
tained in each state.

We can derive a parameter optimization algorithm 
of minimizing the cost function (49) as the algo-
rithm described in Section  5.2 with the following 
modifications:

•	 Set δ′j(f , t) = δj(f , t)+ �state and substitute δj(f , t) in 
(37), (38), and (39) with δ′j(f , t).

•	 Modify (43) as 

(49)
C+cost(�) = LSw-IVE(X ;�)+ JSR(WZ,O,D)

+ �state

∑

j,f ,t

L(θj(f , t)).

(50)v(f , t) ←
∑J

j=1 δ
′
j(f , t)|ŝj(f , t)|2

1+ J�state
.

6 � Computational complexity of each method
We evaluated the computational complexity of each 
method for each iterative update assuming T ≫ MJ  and 
showed it in Table 2. The table includes the complexity of 
MPDR, although it does not use iterative updates.

In each complexity in the table, the complexity of 
O(M2TF) is for calculating �j(f ),�j,S(f ),�j,Z(f ) , and 
all methods include some of these. Note that the calcu-
lation is independent of the number of states J under an 
assumption that x(f , t)xH(f , t) is calculated only once in 
each iterative update, even if we introduce state regulari-
zation. Next, the complexity of O(MJTF) included in Sw-
MPDR, Sw-wMPDR, and Sw-SRIVE+ is for calculating 
ŝ(f , t) in (4) and (6). O(M2JTF) included in the complexity 
of Sw-IVE and Sw-SRIVE is for further calculating ẑj(f , t) 
because ẑj(f , t) is used for updating δj(f , t) . It should be 
noted that Sw-SRIVE+ does not require ẑj(f , t) since it 
changes the update rule of δj(f , t) from (45) to (47).

In summary, the increase in the computational com-
plexity of Sw-wMPDR and Sw-SRIVE+ is only O(MJTF) 
required for calculating ŝ(f , t) in comparison with that 
of wMPDR, IVE, and SRIVE. In contrast, Sw-SRIVE 
requires further additional complexity, O(M2JTF) , for 
calculating ẑj(f , t).

7 � Experiment
In this section, we experimentally evaluate the effective-
ness of our proposed methods in underdetermined situa-
tions, focusing on the following two aspects:

•	 Effectiveness of introducing the TVG source model 
to Sw-MPDR when using DOA-based steering vec-
tors.

•	 Effectiveness of introducing the switching mecha-
nism to SRIVE in underdetermined situations.

Table 2  Computational complexity of each method for 
updating parameters in each iterative update under assumption 
T ≫ MJ

Complexity

MPDR O(M2
TF)

wMPDR [12, 13] O(M2
TF)

Sw-MPDR [5, 6] O(M2
TF +MJTF)

Sw-wMPDR [proposed] O(M2
TF +MJTF)

IVE [19, 20] O(M2
TF)

SRIVE [23] O(M2
TF)

Sw-IVE [10] O(M2
JTF)

Sw-SRIVE [proposed] O(M2
JTF)

Sw-SRIVE+ [proposed] O(M2
TF +MJTF)
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7.1 � Experimental condition
We conducted experiments using TIMIT-ConvMix, 
which is composed of simulated noisy reverberant mix-
tures. To generate the mixtures, we first concatenated 
utterances extracted from the TIMIT corpus [36] to 
obtain a set of single-speaker clean utterance sequences, 
each of which is 15 s long. Then, we mixed N-utterance 
sequences and five4 different additive noise signals 
extracted from the CHiME-3 dataset [38] after individu-
ally reverberating them. We convolved the utterances and 
the noise signals with Room Impulse Responses (RIRs) 
labeled “E2A,” obtained from the RWCP database  [37]. 
In the database, we used three microphones (numbered 
22, 23, and 24) attached to the linear array and randomly 
assigned nine different source locations corresponding to 
the azimuths of 10◦, 30◦, 50◦, . . . , 170◦ to the utterances 
and the noises. RT60 of the E2A’s RIRs was 0.3 s. We used 
all four types of noise signals: bus, cafe, pedestrian area, 
and street junction, although each mixture contained 
only a single type. We set the power ratio of each rever-
berant utterance sequence to the sum of the additive 
noise signals to 10 dB.

We compared four BF-based methods, MPDR  [1], 
wMPDR  [11–13], Sw-MPDR  [6], and the proposed Sw-
wMPDR, and compared two Spatial-Regularization-
based methods (SR-based methods), SRIVE [23] and the 
proposed Sw-SRIVE. For all the methods, we updated 
spatial filter wj,1(f ) or separation matrix W j(f ) 50 times, 
except for MPDR, which does not use iterative updates. 
For the methods using a TVG source model, we initial-
ized v(f , t) = |x1(f , t)|2 . For the methods using a switch-
ing mechanism (i.e., J > 1 ), we randomly initialized 
switching weights δj(f , t) at a positive real value in a range 
of 1± 10−3 and normalized it to satisfy 

∑J
j=1 δj(f , t) = 1 . 

After initialization, we updated δj(f , t) to binary values 
during parameter optimization. For SR-based methods, 
we initialized W j(f ) = IM . We applied projection back 
[39] post-processing to solve the scale ambiguity. For 
Sw-SRIVE and Sw-SRIVE+, we adopted Spatially-Regu-
larized Single-State (SRSS) initialization [27], which uses 
the first 25 updates for the initialization using a single-
state separation matrix W 1(f ) , and then estimates W 
using the remaining 25 updates after duplicating W 1(f ) 
to W 2(f ), . . . ,W J (f ) . This technique is useful for avoid-
ing the inter-state permutation problem  [9], which 
occurs in IVA-related methods with a switching mecha-
nism. We used a Hann window for a short-time analy-
sis, where the frame length and the shift size were set to 
2048 points (128 ms) and 1024 points (64 ms). We set 

sampling frequency fs to 16 kHz. Because we used linear 
arrays, we set relative TDOA τ in (3) for the DOA-based 
steering vectors:

where c = 343  m/s is the speed of sound and 
d = 0.0281  meter is the distance between adjacent 
microphones. We used angle labels for source locations 
in the RWCP database as SOI’s direction φ . Note that 
even using the angle labels provided for the database, the 
steering vector in (3) should contain substantial errors 
from the true ATF because it does not include the effects 
of reflection paths.

In the evaluation, we adopted the following as the met-
rics of the speech enhancement performance  [40, 41]: 
Signal-to-Distortion Ratio (SDR), Signal-to-Interference 
Ratio (SIR), Signal-to-Noise Ratio (SNR), and Percep-
tual Evaluation of Speech Quality (PESQ). We calculated 
SDR and SIR using the MUSEVAL V4 toolkit [42] with 
its bss_eval_images configuration. We calculated SNR 
as the power ratio of outputs when we applied the filter 
to the SOI and noise signals in the mixture. Since both 
BF-based and SR-based methods aim to estimate the 
source image, we generated an SOI’s reference signal for 
each mixture by convolving the SOI’s clean utterance 
sequence with the RIR used for generating the mixture 
after truncating the RIR at 128 ms. Note that the SDR 
obtained in this paper is different from that obtained 
using bss_eval_sources, which forgives channel errors 
that can be accounted for by a time-invariant 512-tap fil-
ter. In contrast, bss_eval_images does not allow any dis-
tortion including gain errors when calculating SDR. Also, 
we did not use scale-invariant SDR [43] because both BF-
based and SR-based methods aim to estimate the source 
image, including its scale.

7.2 � Evaluation results in underdetermined situations 
using SDR improvement

7.2.1 � Evaluation of BF‑based methods
In this section, after examining the effect of the flooring 
of Sw-wMPDR and wMPDR in underdetermined situ-
ations, we compare their performance with the other 
BF-based methods.

First, we applied Sw-wMPDR and wMPDR  [11–13] 
to the mixture by varying flooring coefficient ǫfloor 
from 10−12 to 103 . We calculated the SDR improvement 
(iSDR) of each method by changing the combination 
of (N, M) to (3, 2), (4, 2), (4, 3), (5, 2), and (5, 3). We 
then averaged the iSDRs for all the combinations and 
showed it in Fig. 1 (hereafter, we refer to the iSDR cal-
culated in this way as “average iSDR” in this paper). In 

(51)τm = fs
d(m− 1)

c
cos

(

2π
φ

360◦

)

,

4  Because only nine source locations are available for RIRs in the RWCP 
database [37], we used four noise signals instead of five when N = 5.
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the figure, the average iSDR of Sw-wMPDR tends to 
decrease when we set flooring coefficient ǫfloor < 10−10 , 
denoting that the flooring is essential for Sw-wMPDR 
to work effectively. The average iSDRs of Sw-wMPDR 
and wMPDR also tend to decrease as we increase 
ǫfloor > 10−4 . The above results mean that Sw-wMPDR 
and wMPDR work effectively by setting appropriate 
flooring coefficient ǫfloor between 10−10 and 10−4 when 
using DOA-based steering vectors in underdetermined 
situations. In the following experiments, we adopted 
ǫfloor = 10−12 , 10−10 , and 10−10 for wMPDR, Sw-
wMPDR (J = 2) , and (J = 3) as they achieved the best 
average iSDRs in Fig. 1.

Next, we compared the BF-based methods for each 
(N, M) combination in underdetermined situations. The 
iSDRs are shown in the upper section of Table 3. When 
we focus on the BF-based methods without the TVG 
source model, Sw-MPDR decreased the iSDR for com-
binations (N ,M) ∈ {(3, 2), (4, 3), (5, 3)} , as we increased 
the number of switching states J. On the other hand, 
Sw-wMPDR increased the iSDR for all underdetermined 
situations. Considering the average iSDR shown in the 
table, we conclude that Sw-wMPDR improved the DOA-
informed speech enhancement performance the best 
among the BF-based methods.

We analyzed the reason for the above results using the 
directional responses of estimated spatial filters wj,1(f ) . 
Figure  2 shows the directional responses of wj,1(f ) to 

the given ATFs in case (N ,M) = (3, 2) . On the y-axis, 
h(f ) and hn(f ) represent the true ATFs of the SOI and 
the nth interference. We determined the true ATF of 
each source as the primary eigenvector of the SCM of 
the noiseless source images. The preferred result is that 
wj,1(f ) suppresses hn(f ) for ∀n and f  while preserving 
h(f ) . The directional response of wj,1(f ) to h(f ) is calcu-
lated as minj |wH

j,1(f )h(f )|2 . To enhance clarity in the fig-
ure, we normalized each response by dividing it by the 
maximum response at each frequency. Consequently, the 
maximum normalized response corresponds to 0 dB (or 
is represented by white in the figure). Note that we esti-
mated spatial filter wj,1(f ) without using the true ATFs 
but DOA-based steering vectors a(f ) calculated by (3). In 
the figure, when comparing Fig. 2a and b, wj,1(f ) of Sw-
MPDR  [6] reduced the response to true ATF h(f ) when 
the number of switching states J increased from one (i.e., 
MPDR) to three, corresponding to the iSDR degradation 
in Table 3. On the other hand, wj,1(f ) of Sw-wMPDR pre-
serves h(f ) while suppressing hn(f ) better than Sw-MPDR 
(Fig. 2b and d). As discussed in Section 4.3, Sw-wMPDR 
thus reduces the interferences more effectively than Sw-
MPDR when we use the DOA-based steering vectors.

7.2.2 � Evaluation of SR‑based methods
We compared the iSDRs of Sw-SRIVE, Sw-SRIVE+, and 
SRIVE [23] in each (N, M) combination using Fig. 3. Each 

Fig. 1  Average iSDR of each BF-based method when varying flooring coefficient ǫfloor
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subfigure shows the iSDR obtained when varying the 
weight of spatial regularization �SR from 10−3 to 101 . Note 
that setting �SR = 10−3 almost corresponds to a case 
without using spatial regularization (i.e., Sw-IVE  [10]). 
In this experiment, we set �state = 0.1 for Sw-SRIVE and 
Sw-SRIVE+.

As a general trend, all the methods improved iSDRs by 
increasing �SR from 10−3 to around 100 . This means that 
spatial regularization using DOA-based steering vectors 

effectively improved IVE and Sw-IVE. When compar-
ing Sw-SRIVE and SRIVE at their respective best iSDRs 
around �SR = 100 , Sw-SRIVE achieved a higher iSDR 
than SRIVE for all cases except (N ,M) = (5, 3) . For case 
(N ,M) = (5, 3) , Sw-SRIVE and SRIVE were comparable. 
In addition, Sw-SRIVE+ achieved the highest iSDR of all 
the methods for almost all the cases. These results sug-
gest the effectiveness of the switching mechanism with 
robust clustering in underdetermined situations.

Table 3  SDR improvement [dB] obtained when changing the number of sources N and the number of microphones M. In each 
condition (N, M), fonts with bold and italic bold faces show the best scores among BF-based and SR-based methods, respectively

(N, M) (3, 2) (4, 2) (4, 3) (5, 2) (5, 3) Average

BF-based MPDR [1] 4.69 5.22 5.43 5.50 6.44 5.46

Sw-MPDR (J = 2) [6] 4.11 5.44 5.00 6.28 6.32 5.43

Sw-MPDR (J = 3) [6] 3.81 5.32 4.93 6.41 6.26 5.35

wMPDR [12, 13] 5.26 5.36 6.29 5.46 7.10 5.89

Sw-wMPDR (J = 2) 5.88 6.09 6.50 6.21 7.34 6.40

Sw-wMPDR (J = 3) 6.16 6.45 6.55 6.60 7.45 6.64
SR-based SRIVE [23] 5.75 5.31 6.21 5.45 6.60 5.86

Sw-SRIVE (J = 2) 5.84 5.47 6.21 5.54 6.61 5.93

Sw-SRIVE (J = 3) 6.01 5.63 6.26 5.70 6.63 6.05

Sw-SRIVE+ (J = 2) 6.49 6.20 6.15 6.34 6.74 6.38

Sw-SRIVE+ (J = 3) 6.81 6.21 6.46 6.29 6.84 6.52

Fig. 2  Directional response in each BF-based method in case (N,M) = (3, 2) . The directional response of w j,1(f ) to h(f ) is calculated 
as minj |wH

j,1(f )h(f )|2 . h(f ) and hn(f ) represent the true ATFs of the SOI and that of the nth interference. In these subfigures, the SOI, 1st interference, 
and 2nd interference are located to the azimuths of 10◦ , 110◦ , 150◦ , respectively
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We posit that disregarding noise covariance matrix 
�j(f ) for robust clustering results in high consistency in 
the improvement of iSDR of Sw-SRIVE+ compared to Sw-
SRIVE. In Sw-SRIVE, noise signal ẑj(f , t) is assumed to 
be stationary within each switching state. However, when 
we have more than one speech signal, ẑj(f , t) becomes 
non-stationary, leading to less effective estimation by Sw-
SRIVE. In contrast, Sw-SRIVE+ can mitigate this issue by 
incorporating the robust clustering, leading to the consist-
ent improvement compared with Sw-SRIVE.

In addition, we compared SR-based methods when 
varying the weight of state regularization �state . We cal-
culated and showed the average iSDR of each method 
in Fig.  4. Note that setting �state = 10−3 almost corre-
sponds to a case without using state regularization. Also, 
state regularization does not affect SRIVE as it does not 
use �state . As seen in the results, each SR-based method 
(except SRIVE) achieved the highest average iSDR at 
around �state = 10−1 . In particular, Sw-SRIVE+ (J = 3) 
improved average iSDR by about 0.6 dB when increasing 
�state from 10−3 to 10−1 . The above results clearly demon-
strate the high effectiveness of introducing state regulari-
zation for Sw-SRIVE.

7.2.3 � Comparison between proposed methods
We compared proposed methods, Sw-wMPDR and Sw-
SRIVE+, using Table  3. For each SR-based method, we 
set �SR to a value that achieved the highest average iSDR 
over all underdetermined settings. As the results show, Sw-
SRIVE+ achieved a higher iSDR for case (N ,M) = (3, 2) . 
For case (N ,M) = (4, 3) , the iSDR of Sw-wMPDR became 
almost equal to Sw-SRIVE+. Sw-wMPDR achieved a 
higher iSDR for cases (N ,M) ∈ {(4, 2), (5, 2), (5, 3)} . The 
results suggest that Sw-wMPDR tends to show a higher 
iSDR than Sw-SRIVE+ when the microphone observation 
includes a relatively large number of sources; Sw-SRIVE+ 
has the opposite tendency.

7.3 � Evaluation in underdetermined situations using other 
metrics and under various conditions

This subsection evaluates all the methods under compar-
ison using different evaluation metrics other than iSDR 
and different recording conditions.

7.3.1 � Under DOA estimation errors
We investigated how the average iSDR of each method 
was affected when the SOI’s DOA included certain 

Fig. 3  SDR improvement [dB] by SR-based methods
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estimation errors. The results are shown in Table  4. In 
this experiment, we added a DOA error, φerr , to the 
actual SOI’s DOA, φ , as φ + φerr . Error φerr was randomly 
generated with a uniform distribution in [-φmax , φmax ] for 
each utterance, where maximum angle φmax was varied 
over φmax = 0◦, 5◦, 10◦, 15◦ , and 20◦ . In the table, as φmax 
increases, the iSDRs of MPDR  [1] and Sw-MPDR  [6] 
tend to decrease. In comparison, the decrease in the 
iSDRs of wMPDR  [12, 13] and Sw-wMPDR is smaller 
than that of the former. This result again confirms the 

effectiveness of utilizing the TVG source model for 
DOA-informed speech enhancement. In addition, the 
table shows that the SR-based method is less affected by 
the DOA estimation error than the BF-based method. 
These results confirm the robustness of spatial regulari-
zation when using DOA-based steering vectors.

7.3.2 � Using SIR, SNR, and PESQ
We evaluated the methods using average SIR improve-
ment (iSIR), average SNR improvement (iSNR), and 

Fig. 4  Average iSDR of each SR-based method when varying state regularization weight �state

Table 4  Average iSDR obtained in underdetermined situations when setting DOAs with observation error calculated as φ + φerr . φerr 
is randomly generated with a uniform distribution in [-φmax , φmax ]. Fonts with bold and italic bold faces show the best scores among 
BF-based and SR-based methods, respectively

φmax 0
◦

5
◦

10
◦

15
◦

20
◦

BF-based MPDR [1] 5.46 5.44 5.42 5.40 5.25

Sw-MPDR (J = 2) [6] 5.43 5.42 5.41 5.42 5.10

Sw-MPDR (J = 3) [6] 5.35 5.34 5.33 5.34 5.00

wMPDR [12, 13] 5.89 5.88 5.87 5.88 5.81

Sw-wMPDR (J = 2) 6.40 6.39 6.37 6.39 6.26

Sw-wMPDR (J = 3) 6.64 6.63 6.61 6.63 6.47
SR-based SRIVE [23] 5.86 5.85 5.83 5.80 5.85

Sw-SRIVE (J = 2) 5.93 5.92 5.89 5.86 5.88

Sw-SRIVE (J = 3) 6.05 6.03 6.02 5.98 6.00

Sw-SRIVE+ (J = 2) 6.38 6.38 6.35 6.31 6.29

Sw-SRIVE+ (J = 3) 6.52 6.51 6.48 6.44 6.49
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average PESQ. Each score was obtained by averaging 
each metric over all (N, M) combinations. The results 
are shown in Table  5. First, focusing on the BF-based 
methods, Sw-MPDR ( J = 3)  [6] achieved the high-
est iSIR but the lowest iSNR. On the other hand, 
wMPDR [11, 13] achieved the highest iSNR. In contrast, 
Sw-wMPDR ( J = 3 ) had the best iSDR and PESQ while 
its iSIR and iSNR scores are marginal. Next, focusing 
on the SR-based methods, Sw-SRIVE improved both 
iSIR and iSNR from SRIVE. In contrast, Sw-SRIVE+ 
further improved iSIR but yielded degraded iSNR from 
SRIVE. This might be caused by the introduction of the 
robust clustering in Section 5.3, which updates switch-
ing weight δj(f , t) disregarding the influence of the 
noise covariance matrices. When comparing our pro-
posed methods, Sw-wMPDR is superior to Sw-SRIVE+ 
in terms of iSDR and iSNR, and Sw-SRIVE+ is superior 
in terms of iSIR and PESQ.

7.3.3 � Under long reverberation
We evaluated the performances of the proposed meth-
ods under long reverberation using RIRs labeled “JR1” 
from the RWCP database  [37]. The RT60 of JR1’s RIRs 
was 0.6 s. When creating a mixture using JR1’s RIRs, we 
used the same microphones as with E2A’s RIRs. Then, 
we randomly assigned nine different source locations 
corresponding to the azimuths of 50◦, 60◦, 70◦, . . . , 130◦ 
to the utterances and the noises. We set the minimum 
angle difference between each utterance to 20◦.

We first evaluated the average iSDR of each method 
in an environment simulated using JR1’s RIRs (JR1 
environment) by setting various values to the hyperpa-
rameters, ǫfloor , �SR , and �state , and showed the results 

in Fig.  5. Each figure shows that our proposed meth-
ods outperforms the conventional methods in the JR1 
environment when we set appropriate hyperparam-
eters. In addition, we can confirm that a certain range 
of hyperparameters is effective for both E2A and JR1 
environments when using the proposed methods. For 
example, Sw-wMPDR achieved a higher iSDR than 
Sw-MPDR when we set ǫfloor as 10−10 < ǫfloor < 10−4 
(see Figs. 1 and 5a). Sw-SRIVE+ achieved higher iSDR 
than SRIVE when we set �SR as 10−3 < �SR < 101 (see 
Figs.  3f and 5b) and �state = 10−1 (see Figs.  4 and 5c). 
From the above results, we can say that these hyperpa-
rameters are not very sensitive to acoustic scenarios. 
Of course, to obtain the best results for each envi-
ronment, these hyperparameters need to be tuned. 
Our future work might investigate in more detail the 
behavior of the proposed methods depending on the 
hyperparameters in various environments.

Next, we evaluated the average iSDR for each method 
using the optimal hyperparameters and showed the 
results in each environment. Table  6 shows the results. 
In the table, both Sw-wMPDR and Sw-SRIVE+ achieved 
higher iSDRs than their conventional methods in both 
E2A and JR1 environments.

7.3.4 � Using convergence speed
We showed the convergence speed of BF-based and 
SR-based methods in Fig.  6. First, when compar-
ing the convergence speed of IVE, SRIVE, wMPDR, 
and Sw-wMPDR at the first 25 iterations, wMPDR 
and Sw-wMPDR are almost the same and faster than 
SRIVE. This means that the convergence speed does 
not change significantly between wMPDR and Sw-
wMPDR, and the convergence speed of BF-based 
methods is faster than that of SR-based methods. Also, 
the convergence speed of SRIVE is faster than that of 
IVE. It means that spatial regularization accelerates the 
convergence speed of IVE. Next, at the latter 25 itera-
tions after conducting SRSS initialization, the iSDR of 
Sw-SRIVE converged from 25 to 30 iterations. On the 
other hand, the iSDR of Sw-SRIVE+ is improved dra-
matically from 25 to 30 iterations, followed by gradual 
improvement until the convergence at around 40 itera-
tions. This result suggests that we should set different 
iteration numbers for Sw-SRIVE or Sw-SRIVE+ after 
SRSS initialization.

7.4 � Evaluation in determined and overdetermined 
situations using SDR improvement

For references, we evaluated the speech enhancement 
methods in determined and overdetermined situa-
tions (N ≤ M) . The results are shown in Table  7. In 

Table 5  Average iSDR, iSIR, iSNR, and PESQ obtained in 
underdetermined situations. Fonts with bold and italic bold 
faces show the best scores among BF-based and SR-based 
methods, respectively

iSDR iSIR iSNR PESQ

BF-based MPDR [1] 5.46 7.24 1.85 1.14

Sw-MPDR (J = 2) [6] 5.43 8.98 -2.17 1.12

Sw-MPDR (J = 3) [6] 5.35 9.21 -3.39 1.12

wMPDR [12, 13] 5.89 6.38 4.89 1.18

Sw-wMPDR (J = 2) 6.40 6.66 4.30 1.19

Sw-wMPDR (J = 3) 6.64 6.91 3.77 1.21
SR-based SRIVE [23] 5.86 8.04 3.41 1.19

Sw-SRIVE (J = 2) 5.93 8.30 3.59 1.19

Sw-SRIVE (J = 3) 6.05 8.64 3.68 1.20

Sw-SRIVE+ (J = 2) 6.38 10.23 2.45 1.22

Sw-SRIVE+ (J = 3) 6.52 10.07 2.94 1.23
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this experiment, we adjusted weight �SR to a value that 
achieved the highest iSDR for each (N, M) combination.

As seen in the results, wMPDR achieved the high-
est iSDRs for BF-based methods. For SR-based meth-
ods, Sw-SRIVE+ (J = 3) achieved the highest iSDR for 
cases (N ,M) ∈ {(2, 2), (3, 3)} . On the other hand, SRIVE 
achieved the highest iSDR for (N ,M) = (2, 3) . These 
results mean that the switching mechanism used in our 
proposed methods becomes less effective in determined 
and overdetermined situations, i.e., when we have more 
microphones than necessary. The performance degrada-
tion of the proposed methods in determined and over-
determined situations may result from employing the 
switching mechanism with DOA-based steering vectors. 
Generally, the switching mechanism enables more effec-
tive noise reduction when we have fewer microphones 

than necessary. However, it may start introducing dis-
tortion to the SOI when we have excess microphones. 
Notably, this issue does not arise when relatively accurate 
steering vectors are available, as demonstrated in previ-
ous articles [9, 10].

It may be worth noting that when comparing the 
results of BF-based and SR-based methods, the latter 
show much higher iSDRs for all cases (note that there 
is no significant difference between these methods in 
underdetermined situations, as shown in Table  3). This 
difference may be caused by how they use the DOA-
based ATFs. The BF-based methods use them in the 
distortionless constraint as a hard constraint, while the 
SR-based methods use them in the spatial regularization 
as a soft constraint. Using the soft constraint might make 
the SR-based methods relatively robust to the modeling 
errors in the DOA-based ATF, even in determined and 
overdetermined situations.

Table  7 also shows for reference the average iSDR 
obtained when using IVA  [17], Sw-IVA  [9], IVE [19, 
20], and Sw-IVE  [10]. When evaluating the iSDR of 
IVA and Sw-IVA, we used oracle information to select 
the SOI from the separated signals. We calculated the 
iSDRs of IVE and Sw-wIVE as those of SR-based meth-
ods with �SR = 0 . Compared with the SR-based meth-
ods, IVA and Sw-IVA achieved much higher iSDRs, 
and IVE and Sw-IVE yielded much lower iSDRs. The 
higher iSDRs obtained by IVA and Sw-IVA may be 
caused partially by using the oracle information for the 
SOI selection. In contrast, the lower iSDRs obtained 
by IVE and Sw-IVE show the effectiveness of the SR-
based methods.

To summarize our experimental results, we confirmed 
that our proposed methods, Sw-wMPDR and Sw-SRIVE, 

Fig. 5  Average iSDR of BF-based and SR-based methods in JR1 environment ( RT60 = 600 ms) when varying flooring coefficient ǫfloor , spatial 
regularization weight �SR , and state regularization weight �state

Table 6  iSDR [dB] obtained in both E2A and JR1 environments. 
Fonts with bold and italic bold faces show the best scores 
among BF-based and SR-based methods, respectively

E2A (300 ms) JR1 (600 ms)

BF-based MPDR [1] 5.46 4.31

Sw-MPDR (J = 2) [6] 5.43 4.99

Sw-MPDR (J = 3) [6] 5.35 5.25

wMPDR [12, 13] 5.89 4.47

Sw-wMPDR (J = 2) 6.40 5.04

Sw-wMPDR (J = 3) 6.64 5.36
SR-based SRIVE [23] 5.86 4.33

Sw-SRIVE (J = 2) 5.93 4.44

Sw-SRIVE (J = 3) 6.05 4.62

Sw-SRIVE+ (J = 2) 6.38 5.00

Sw-SRIVE+ (J = 3) 6.52 5.27
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achieved more accurate speech enhancement than Sw-
MPDR [6] and SRIVE [23] in underdetermined situations 
( N > M ), respectively. However, under general scenarios 
where overdetermined and determined situations can 

arise, a method must be devised that selects the optimal 
number of switches with or without prior knowledge of 
the situations. Future work will tackle this situation.

8 � Conclusion
We proposed methods that enhance a single SOI using 
the prior knowledge of the SOI’s DOA in underde-
termined situations. We developed Sw-wMPDR by 
introducing a time-varying Gaussian source model to 
Sw-MPDR. Using the model and adopting appropri-
ate source variance flooring, Sw-wMPDR effectively 
preserves the SOI while suppressing the interference 
speech signals. We also developed Sw-SRIVE by intro-
ducing a switching mechanism to SRIVE. We proposed 
two new techniques, robust clustering and state regu-
larization, for Sw-SRIVE to make it work effectively in 
underdetermined situations. With robust clustering, we 
developed Sw-SRIVE+ based on the modified updat-
ing rule of switching weights. For state regularization, 
we introduced a new regularization term for stabilizing 
the optimization of Sw-SRIVE+. Experiments showed 
that both of our proposed methods, Sw-wMPDR and 
Sw-SRIVE+, achieved better DOA-informed SOI 
enhancement in terms of SDR improvement than 
the conventional methods, Sw-MPDR and SRIVE, in 
underdetermined situations.

Future work may develop online methods for DOA-
informed speech enhancement that can cope with sce-
narios where speakers are moving.

Fig. 6  iSDR when varying the number of iterative updates in case (N,M) = (3, 2)

Table 7  iSDR [dB] obtained in determined and overdetermined 
situations (N ≤ M) . Fonts with bold and italic bold faces show 
the best scores among BF-based and SR-based methods, 
respectively

(2, 2) (2, 3) (3, 3)

BF-based MPDR [1] 3.82 1.19 3.83

Sw-MPDR (J = 2) [6] 1.70 0.99 3.32

Sw-MPDR (J = 3) [6] 1.52 0.96 3.27

wMPDR [12, 13] 5.53 3.49 5.21

Sw-wMPDR (J = 2) 5.51 3.42 5.22
Sw-wMPDR (J = 3) 5.29 3.26 5.19

SR-based SRIVE [23] 7.38 8.27 5.81

Sw-SRIVE (J = 2) 7.61 8.06 5.87

Sw-SRIVE (J = 3) 7.64 7.82 6.05

Sw-SRIVE+ (J = 2) 7.76 8.01 6.70

Sw-SRIVE+ (J = 3) 7.95 8.17 6.85
BSS-based IVA [17] 8.60 9.89 7.80

Sw-IVA (J = 2) [9] 8.75 9.88 8.43

Sw-IVA (J = 3) [9] 8.90 10.02 8.63

IVE [19, 20] 4.64 4.04 3.08

Sw-IVE (J = 2) [10] 4.77 4.12 3.08

Sw-IVE (J = 3) [10] 4.73 3.99 3.15
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Appendix
Here, we introduce how to derive (10). First, using (4) 
and (6), x(f , t) can be expressed by W j(f ) , δj(f , t) , ŝ(f , t) , 
and ẑ(f , t):

where W (f , t) =
∑

j δj(f , t)W j(f ) . According to this 
relationship, we can write p(x(f , t)) = | detW (f , t)

|
2p(ŷ(f , t)) , and thus can derive a negative log-likelihood 
function for a given observed signal X :

Because δj(f , t) takes 1 for a state j and takes 0 for the 
other states,

Based on (6) and (9) using the same property of δj(f , t),

By substituting (54) and (55) to (53), we obtain

By inserting the TVG source model in (8) to the second 
term in the parentheses of the above function, we can 
derive (10).

(52)

x(f , t) =
∑

j

δj(f , t)W
−H

j (f )

[
ŝ(f , t)
ẑ(f , t)

]

︸ ︷︷ ︸

ŷ(f ,t)

= W−H(f , t)ŷ(f , t),

(53)

LNL(X ;W ,V ,D) = −
∑

f ,t

log p(x(f , t))

= −
∑

f ,t

log
[

| detW (f , t)|2p(ŷ(f , t))
]

= −
∑

f ,t

[

2 log | det
∑

j

δj(f , t)W j(f )|

+ log p(ŷ(f , t))

]

.

(54)

log | det
∑

j

δj(f , t)W j(f )|

=
∑

j

δj(f , t) log | detW j(f )|.

(55)

log p(ŷ(f , t)) = log p(ŝ(f , t))+ log p(ẑ(f , t))

=
(

log p

(
∑

j

δj(f , t)ŝj(f , t)

)

+ log p

(
∑

j

δj(f , t)ẑj(f , t)

))

=
∑

j

δj(f , t)

(

log p(ŝj(f , t))+ log p(ẑj(f , t))

)

.

(56)
LNL(X ;W ,V ,D) =

∑

j,f ,t

δj(f , t)

(

−2 log | detW j(f )|

− log p(ŝj(f , t))− log p(ẑj(f , t))

)

.
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