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ABSTRACT

This paper introduces the blind source separation (BSS) of convolutive mixtures of acoustic signals, especially
speech. A statistical and computational technique, called independent component analysis (ICA), is examined.
By achieving nonlinear decorrelation, nonstationary decorrelation, or time-delayed decorrelation, we can find
source signals only from observed mixed signals. Particular attention is paid to the physical interpretation of
BSS from the acoustical signal processing point of view. Frequency-domain BSS is shown to be equivalent to
two sets of frequency domain adaptive microphone arrays, i.e., adaptive beamformers (ABFs). Although BSS
can reduce reverberant sounds to some extent in the same way as ABF, it mainly removes the sounds from the
jammer direction. This is why BSS has difficulties with long reverberation in the real world. If sources are
not “independent,” the dependence results in bias noise when obtaining the correct separation filter coefficients.
Therefore, the performance of BSS is limited by that of ABF. Although BSS is upper bounded by ABF, BSS
has a strong advantage over ABF. BSS can be regarded as an intelligent version of ABF in the sense that it can
adapt without any information on the array manifold or the target direction, and sources can be simultaneously
active in BSS.

Keywords: Blind source separation, convolutive mixtures, independent component analysis, adaptive beam-
formers, microphone array

1. INTRODUCTION

Speech recognition is a fundamental technology for communication with computers, but with existing computers,
the recognition rate drops rapidly when more than one person is speaking or when there is background noise. On
the other hand, humans can engage in comprehensible conversations at a noisy cocktail party. This is the well
known cocktail-party effect, where the individual speech waveforms are found from the mixtures. The aim of
source separation is to provide computers with this cocktail party ability, thus making it possible for computers
to understand what a person is saying at a noisy cocktail party.

Blind source separation (BSS) is an emerging technique, which enables the extraction of target speech from
observed mixed speeches without the need for source positioning, spectral construction, or a mixing system. To
achieve this, attention has focused on a method based on independent component analysis (ICA). ICA extracts
independent sounds from among mixed sounds. This paper considers ICA in a wide sense, namely nonlinear
decorrelation together with nonstationary decorrelation and time-delayed decorrelation. These three methods
are discussed in a unified manner.1–3 There are a number of applications for the BSS of mixed speech signals
in the real world,4 but the separation performance is still not good enough.5, 6

Since ICA is a purely statistical process, the separation mechanism has not been clearly understood in the
sense of acoustic signal processing, and it has been difficult to know which components were separated, and to
what degree. Recently, the ICA method has been investigated in detail, and its mechanisms have been gradually
uncovered by using theoretical analysis from the perspective of acoustic signal processing7 as well as experimental
analysis based on impulse response.8 The mechanism of BSS based on ICA has been shown to be equivalent
to that of an adaptive microphone array system, i.e., N sets of adaptive beamformers (ABFs) with an adaptive
null directivity aimed in the direction of unnecessary sounds.
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Figure 1. BSS system configuration.

From the equivalence between BSS and ABF, it becomes clear that the physical behavior of BSS reduces
the jammer signal by making a spatial null towards the jammer. BSS can further be regarded as an intelligent
version of ABF in the sense that it can adapt without any information on the source positions or period of source
existence/absence.

The aim of this paper is to describe BSS and introduce ICA in terms of acoustical signal processing. Section 2
outlines the framework of BSS for convolutive mixtures of speech. Section 3 briefly summarizes the background
theory of ICA. In Sect. 4, the separation framework is described for both second-order statistics and higher-order
statistics approaches. The discussion is expanded to the separation mechanism of BSS, compared with an ABF
in Sect. 5. This understanding leads to important discussions on performance and on limitations in Sect. 6. The
paper finishes with a summary of the main conclusions.

2. WHAT IS BSS?

Blind source separation (BSS) is an approach for estimating source signals si(n) using only the information of
mixed signals xj(n) observed at each input channel. Typical examples of such source signals include mixtures of
simultaneous speech signals that have been picked up by several microphones, brain waves recorded by multiple
sensors, and interfering radio signals arriving at a mobile station.

2.1. Mixed Signal Model for Speech Signals in a Room

In the case of audio source separation, several sensor microphones are placed in different positions so that each
records a mixture of the original source signals at a slightly different time and level. In the real world where the
source signals are speech and the mixing system is a room, the signals that are picked up by the microphones
are affected by reverberation.9,10 Therefore, the N signals recorded by M microphones are modeled as

xj(n) =
N∑

i=1

P∑
p=1

hji(p)si(n − p + 1) (j = 1, · · · , M), (1)

where si is the source signal from a source i, xj is the signal received by a microphone j, and hji is the P -taps
impulse response from source i to microphone j.

This paper focuses on speech signals as sources that are nongaussian, nonstationary, colored, and that have
a zero mean.
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Figure 2. Task of blind source separation of speech signals.

2.2. Separated Signal Model

To obtain separated signals, separation filters wij(k) of Q-taps are estimated, and the separated signals are
obtained as

yi(n) =
M∑

j=1

Q∑
q=1

wij(q)xj(n − q + 1) (i = 1, · · · , N). (2)

The separation filters are estimated so that the separated signals become mutually independent. This paper
considers a two-input, two-output convolutive BSS problem, i.e., N = M = 2 (Fig. 1) without a loss of generality.

2.3. Task of Blind Source Separation of Speech Signals

It is assumed that the source signals s1 and s2 are mutually independent. This assumption usually holds for
sounds in the real world. There are two microphones which pick up the mixed speech. Only the observed signals
x1 and x2 are available and they are dependent. The goal is to adapt the separation systems wij , and extract
y1 and y2 so that they are mutually independent. With this operation, we can obtain s1 and s2 in the output
y1 and y2. No information is needed on the source positions or period of source existence/absence. Nor is any
information required on the mixing systems hji. Thus, this task is called blind source separation (Fig. 2).

Note that the separation systems wij can at best be obtained up to a scaling and a permutation, and thus
cannot itself solve the dereverberation/deconvolution problem.11

2.4. Instantaneous Mixtures vs. Convolutive Mixtures

2.4.1. Convolutive mixtures.

If the sound separation is being undertaken in a room, the mixing systems hji are of course FIR filters with
several thousand taps. This is the very difficult and relatively new problem of convolutive mixtures.

2.4.2. Instantaneous mixtures

By contrast, if the mixing systems hji are scalars, i.e., there is no delay and no reverberation, such as when we
use an audio mixer, this becomes a problem of instantaneous mixtures.

In fact, other applications such as the fMRI and EEG signals found in biomedical contexts and images are
almost all instantaneous mixtures problems. Instantaneous mixtures problems have been well studied and there
are many good results.
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2.5. Time-Domain Approach vs. Frequency-Domain Approach

Several methods have been proposed for achieving the BSS of convolutive mixtures. Some approaches consider the
impulse responses of a room hji as FIR filters, and estimate those filters in the time domain12–14; other approaches
transform the problem into the frequency domain so that they can simultaneously solve an instantaneous BSS
problem for every frequency.15–17

2.6. Time-Domain Approach for Convolutive Mixtures

In the time-domain approach for convolutive mixtures, separation systems wij can be FIR filters or IIR filters.
However, FIR filters are usually used to realize a non-minimum-phase filter.12

In the BSS of convolutive mixtures in the time domain, Sun and Douglas clearly distinguished multichannel
blind deconvolution from convolutive blind source separation.14

Multichannel blind deconvolution tries to make the output both spatially and temporally independent. The
sources are assumed to be temporally as well as spatially independent, i.e., they are assumed to be independent
from channel to channel and from sample to sample. On the other hand, convolutive BSS tries to make the output
spatially (mutually) independent without deconvolution. Since speech is temporally correlated, convolutive BSS
is appropriate for the task of speech separation. If we apply multichannel blind deconvolution to speech, it
imposes undesirable constraints on the output, causing undesirable spectral equalization, flattening, or whitening.
Therefore, we need some pre/post-filtering method that maintains the spectral content of the original speech in
the separated output.14, 18

An advantage of the time-domain approach is that we do not have to think about the heavy permutation
problem, i.e., the estimated source signal components are recovered with a different order. Permutation poses a
serious problem in relation to frequency-domain BSS, whereas it is a trivial problem in time-domain BSS.

A disadvantage of the time-domain approach is that the performance depends strongly on the initial value.12, 18

2.7. Frequency-Domain Approach for Convolutive Mixtures

Smaragdis16 proposed working directly in the frequency domain applying a nonlinear function to signals with
complex values.

The frequency domain approach to convolutive mixtures is to transform the problem into an instantaneous
BSS problem in the frequency domain.15–17, 19, 20 Here we consider a two-input, two-output convolutive BSS
problem without a loss of generality.

Using a T -point short-time Fourier transformation for (1), we obtain,

X(ω,m) = H(ω)S(ω,m), (3)

where ω denotes the frequency, m represents the time-dependence of the short-time Fourier transformation,
S(ω, m) = [S1(ω, m), S2(ω, m)]T is the source signal vector, and X(ω,m) = [X1(ω, m),X2(ω, m)]T is the observed
signal vector. We assume that the (2×2) mixing matrix H(ω) is invertible, and that Hji(ω) �= 0. Also, H(ω)
does not depend on time m.

The separation process can be formulated in a frequency bin ω:

Y(ω, m) = W(ω)X(ω,m), (4)

where Y(ω, m) = [Y1(ω, m), Y2(ω, m)]T is the estimated source signal vector, and W(ω) represents a (2×2)
separation matrix at frequency bin ω. The separation matrix W(ω) is determined so that Y1(ω, m) and Y2(ω, m)
become mutually independent. The above calculation is carried out at each frequency independently. This paper
considers the DFT frame size T to be equal to the length of separation filter Q.

Hereafter, the convolutive BSS problem is considered in the frequency domain unless stated otherwise. Note
that digital signal processing in the time and frequency domains are essentially identical, and all discussions here
in the frequency domain are also essentially true for the time-domain convolutive BSS problem.

maki
Proc. of SPIE 6247-7－4－



2.8. Scaling and Permutation Problems

Applying the model in the frequency domain introduces a new problem: the frequency bins are treated as being
mutually independent. As a result, the estimated source signal components are recovered with a different order
in the different frequency bins. Thus the trivial permutation ambiguity associated with time-domain ICA, i.e.,
the ordering of the sources, now becomes nontrivial. A robust and precise method for solving the permutation
problem of frequency-domain BSS was proposed by Sawada.21

In frequency-domain BSS, the scaling problem also becomes nontrivial, i.e., the estimated source signal
components are recovered with a different gain in the different frequency bins. The scaling ambiguity in each
frequency bin results in a convolutive ambiguity for each source, this results in an arbitrary filtering. This reflects
the fact that filtered versions of independent signals remain independent. The minimal distortion principle for
solving the scaling problem was proposed by Matsuoka.22

3. WHAT IS ICA?

Independent component analysis (ICA) is a statistical method that was originally introduced in the context of
neural network modeling.23–30 Recently, this method has been used for the BSS of sounds, fMRI and EEG
signals of biomedical applications, wireless communication signals, images, and other applications. ICA thus
became an exciting new topic in the fields of signal processing, artificial neural networks, advanced statistics,
information theory, and various application fields.

Very general statistical properties are used in ICA theory, namely information on statistical independence.
In a source separation problem, the source signals are the “independent components” of the data set. In brief,
BSS poses the problem of finding a linear representation in which the components are mutually independent.
ICA consists of estimating both the separation matrix W(ω) and sources si, when we only have the observed
signals xj .

The separation matrix W(ω) is determined so that one output contains as much information on the data as
possible. The value of any one of the components gives no information on the values of the other components.
If the separated signals are mutually independent, then they are equal to the source signals.

3.1. What Is Independence?

Independence is a stronger concept than “no correlation,” since correlation only deals with second-order statistics
whereas independence deals with higher-order statistics. Independent components can be found by nonlinear,
nonstationary, or time-delayed decorrelation.

In the nonlinear decorrelation approach, if the separation matrix W(ω) is a true separating matrix and y1

and y2 are independent and have a zero mean, and the nonlinear function Φ(·) is an odd function such that
Φ(y1) also has a zero mean, then

E[Φ(y1)y2] = E[Φ(y1)]E[y2] = 0. (5)

We look for such separation matrix W(ω) that gives (5). The question here concerns, how should the nonlinear
function be chosen?

The answers can be found by using several background theories for the ICA. Using any of these theories, we
can determine the nonlinear function in a satisfactory way. These are the minimization of mutual information,
maximization of nongaussianity, and maximization of likelihood.

For the nonstationary and time-delayed decorrelation approaches, see Sect. 4.

3.2. Minimization of Mutual Information

The first approach for ICA, inspired by information theory, is the minimization of mutual information. Mutual
information is a natural information-theoretic measure of statistical independence. It is always nonnegative, and
zero if, and only if, the variables are statistically independent. Therefore it is natural to estimate the independent
components by minimizing the mutual information of their estimates. Minimization of mutual information can
be interpreted as giving the maximally independent component.
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Figure 3. Speech signal and its probability density function (pdf). Dotted line is the pdf of the Gaussian distribution.

3.3. Maximization of Nongaussianity

The second approach is based on the maximization of nongaussianity. The central limit theorem in probability
theory says that the distribution of a sum of independent random variables tends toward a Gaussian distribution.
Roughly speaking, the sum of independent random variables usually has a distribution that is closer to Gaussian
than either of the original random variables. Therefore, the independent components can be found by finding
the directions in which the data is maximally nongaussian.

Note that in most classic statistical theories, random variables are assumed to have a Gaussian distribution.
By contrast, in the ICA theory, random variables are assumed to have a nongaussian distribution.

Many real-world data sets, including speech, have supergaussian distributions. Supergaussian random vari-
ables typically have a spiky probability density function (pdf), i.e., the pdf is relatively large at zero compared
with the Gaussian distribution. A speech signal is a typical example (Fig. 3).

3.4. Maximization of Likelihood

The third approach is based on the maximization of likelihood. Maximum likelihood (ML) estimation is a
fundamental principle of statistical estimation, and a very popular approach for estimating the ICA. We take
the ML estimation parameter values as estimates that give the highest probability for the observations.

ML estimation is closely related to the neural network principle of maximization of information flow (infomax).
The infomax principle is based on maximizing the output entropy, or information flow, of a neural network with
nonlinear outputs. We maximize the mutual information between the inputs xi and outputs yi. Maximization
of this mutual information is equivalent to a maximization of the output entropy, so infomax is equivalent to
maximum likelihood estimation.
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3.5. Three ICA Theories Are Identical
It is of interest to note that all the above solutions are identical.31 The mutual information I(y1, y2) between
the output y1 and y2 is expressed as

I(y1, y2) =
2∑

i=1

H(yi) − H(y1, y2), (6)

where H(yi) are the marginal entropies and H(y1, y2) is the joint entropy of the output. The entropy of y can
be calculated by using p(y) (pdf of y) as follows:

H(y) = E[log
1

p(y)
] =

∑
p(y) log

1
p(y)

. (7)

Mutual information I(y1, y2) in Sect. 3.2 is minimized by minimizing the first term, or maximizing the second
term of (6). Gaussian signals maximize the first term, namely maximization of nongaussianity in Sect. 3.3
achieves minimization of the first term. On the other hand, maximization of the joint entropy of the output
in Sect. 3.4 maximizes the second term. Accordingly, the above mentioned three approaches are identical. For
more details of these theories, see.12, 32–34

3.6. Learning Rules
To achieve separation, we vary the separation matrix W(ω) in (4), and see how the distribution of the output
changes. We search for the separation matrix W(ω) that minimizes the mutual information, maximize the
nongaussianity, or maximize the likelihood of the output. This can be accomplished by the gradient method.35

Bell and Sejnowski derived a very simple gradient algorithm.36 Amari proposed the natural gradient version,
and increased the stability and convergence speed.37 This is a nonlinear extension of the ordinary requirement
of uncorrelatedness, and in fact, this algorithm is a special case of the nonlinear decorrelation algorithm. The
theory makes it clear that the nonlinear function must correspond to the derivative of the logarithm of the pdf
of the sources.

Hereafter, we assume that the pdf of the (speech) sources is known, that is, the supergaussian distribution
of the speech sources is known. It also assumes that the nonlinear function is set in a satisfactory way that
corresponds to the derivative of the logarithm of the pdf, namely the nonlinear function is properly set at
tanh(·).

4. HOW SPEECH SIGNALS CAN BE SEPARATED?

This paper attempts a simple and comprehensive (rather than accurate) exploration from the acoustical signal
processing perspective. With the ICA-based BSS framework, how can we separate speech signals?

The simple answer is to diagonalize RY , where RY is a (2×2) matrix:

RY =
[ 〈Φ(Y1)Y1〉 〈Φ(Y1)Y2〉

〈Φ(Y2)Y1〉 〈Φ(Y2)Y2〉
]

. (8)

The function Φ(·) is a nonlinear function. The operation 〈·〉 is the averaging operation used to obtain statistical
information. We want to minimize the off-diagonal components, while at the same time, constraining the diagonal
components to proper constants.

The components of the matrix RY correspond to the mutual information between Yi and Yj . At the con-
vergence point, the off-diagonal components, which are the mutual information between Y1 and Y2, become
zero:

〈Φ(Y1)Y2〉 = 0, 〈Φ(Y2)Y1〉 = 0. (9)

While at the same time, the diagonal components, which only control the amplitude scaling of the output Y1

and Y2, are constrained to proper constants:

〈Φ(Y1)Y1〉 = c1, 〈Φ(Y2)Y2〉 = c2. (10)
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To achieve this convergence, we use the recursive learning rule

Wi+1 = Wi + η∆Wi, (11)

∆Wi =
[

c1 − 〈Φ(Y1)Y1〉 〈Φ(Y1)Y2〉
〈Φ(Y2)Y1〉 c2 − 〈Φ(Y2)Y2〉

]
Wi. (12)

When RY is diagonalized, ∆W converges to zero.

If c1 = c2 = 1, the algorithm is called holonomic. If c1 = 〈Φ(Y1)Y1〉 and c2 = 〈Φ(Y2)Y2〉, the algorithm is
called nonholonomic.

4.1. Second Order Statistics vs. Higher Order Statistics

If Φ(Y1) = Y1, we have the simple decorrelation:

〈Φ(Y1)Y2〉 = 〈Y1Y2〉 = 0. (13)

This is not sufficient to achieve independence. However, if we have nonstationary sources, we have this equation
for multiple time blocks, and thus can solve the problem. This is the nonstationary decorrelation approach.38

Or, if we have colored sources, we have a delayed correlation for a multiple time delay:

〈Φ(Y1)Y2〉 = 〈Y1(m)Y2(m + τi)〉 = 0, (14)

thus we can solve the problem. This is the time-delayed decorrelation (TDD) approach.39, 40

These are the approaches of second order statistics (SOS).

On the other hand if, for example, Φ(Y1) = tanh(Y1), we have:

〈Φ(Y1)Y2〉 = 〈tanh(Y1)Y2〉 = 0. (15)

With a Tailor expansion of tanh(·), (15) can be expressed as

〈(Y1 − Y 3
1

3
+

2Y 5
1

15
− 17Y 7

1

315
...) Y2〉 = 0, (16)

thus we have higher order or nonlinear decorrelation, then we can solve the problem. This is the approach of
higher order statistics (HOS).

4.2. Second Order Statistics (SOS) Approach

The second order statistics (SOS) approach exploits the second order nonstationary/colored structure of the
sources, namely crosstalk minimization with additional nonstationary/colored information on the sources. We-
instein et al.11 pointed out that nonstationary signals provide enough additional information to estimate the
separation matrix W(ω) and proposed a method based on nonstationary decorrelation. Some authors have used
the SOS approach for mixed speech signals.5, 41

This approach can be understood in a comprehensive way in that we have four unknown parameters Wij in
each frequency bin, but only three equations in (9) and (10) since Y1Y2 = Y2Y1 when Φ(Yi) = Yi, that is, the
simultaneous equations become underdetermined. Accordingly the simultaneous equations cannot be solved.

However, when the sources are nonstationary, the second order statistics is different in each time block.
Similarly, when the sources are colored, the second order statistics is different in each time delay. As a result,
more equations are available and the simultaneous equations can be solved.

In the nonstationary decorrelation approach, the source signals S1(ω, m) and S2(ω, m) are assumed to have
a zero mean and be mutually uncorrelated. To determine the separation matrix W(ω) so that Y1(ω, m) and
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Y2(ω, m) become mutually uncorrelated, we seek a W(ω) that diagonalizes the covariance matrices RY (ω, k)
simultaneously for all time blocks k,

RY (ω, k) = W(ω)RX(ω, k)WH(ω)
= W(ω)H(ω)Λs(ω, k)HH(ω)WH(ω)
= Λc(ω, k), (17)

where H denotes the conjugate transpose, RX is the covariance matrix of X(ω) as follows,

RX(ω, k) =
1
M

M−1∑
m=0

X(ω,Mk + m)XH(ω, Mk + m), (18)

Λs(ω, k) is a covariant matrix of source signals that is a different diagonal matrix for each time block k, and
Λc(ω, k) is an arbitrary diagonal matrix.

The diagonalization of RY (ω, k) can be written as an overdetermined least squares problem,

arg min
W (ω)

∑
k

||diag{W(ω)RX(ω, k)WH(ω)} − W(ω)RX(ω, k)WH(ω)||2

s.t.,
∑

k

||diag{W(ω)RX(ω, k)WH(ω)}||2 �= 0, (19)

where ||x||2 is the squared Frobenius norm and diagA is the diagonal components of the matrix A. The solution
can be found by the gradient method.

In the time-delayed decorrelation approach, RX is defined as follows,

RX(ω, τi) =
1
M

M−1∑
m=0

X(ω,m)XH(ω, m + τi), (20)

and we seek a W(ω) that diagonalizes the covariance matrices RY (ω, τi) simultaneously for all time delays τi.

4.3. Higher Order Statistics (HOS) Approach

The higher order statistics (HOS) approach exploits the nongaussian structure of the sources. Or more simply,
we could say that we have four equations in (9) and (10) for four unknown parameters Wij in each frequency bin.
Accordingly the simultaneous equations can be solved. To calculate the separation matrix W(ω), an algorithm
has been proposed based on the minimization of the Kullback-Leibler divergence.16, 17 For stable and faster
convergence, Amari42 proposed an algorithm based on the natural gradient. Using the natural gradient, the
optimal separation matrix W(ω) is obtained by using the following gradient iterative equation:

Wi+1(ω) = Wi(ω)
+η

[
diag

(〈Φ(Y)YH〉)−〈Φ(Y)YH〉]Wi(ω), (21)

where Y=Y(ω, m), 〈·〉 denotes the averaging operator, i is used to express the value of the i-th step in the
iterations, and η is the step size parameter. In addition, we define the nonlinear function Φ(·) to signals with
complex values as

Φ(Y) = tanh(Y(R)) + j tanh(Y(I)), (22)

where Y(R) and Y(I) are the real part and the imaginary part of Y, respectively.16

For the complex numbered nonlinear function, the polar coordinate version

Φ(Y) = tanh(abs(Y)) ej arg(Y) (23)

was shown to outperform the Cartesian coordinate version (22) both theoretically and experimentally.43
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Figure 4. Two sets of ABF-system configurations.

5. SEPARATION MECHANISM OF BSS

BSS is a statistical, or mathematical method, so the physical behavior of BSS is not obvious. We are simply
attempting to make the two output signals Y1 and Y2 independent. Then, what is the physical interpretation of
BSS?

In earlier studies, Cardoso and Souloumiac28 indicated the connection between blind identification and beam-
forming in a narrowband context. Kurita et al.44 and Parra and Alvino45 used the relationship between BSS
and beamforming to achieve better BSS performance. However, their theoretical discussion of this relationship
was insufficient.

This section discusses this relationship more closely, and provides a physical understanding of frequency-
domain BSS.7 It also provides an interpretation of BSS from the physical point of view showing the equivalence
between frequency-domain BSS and two sets of frequency-domain adaptive microphone arrays, i.e., adaptive
beamformers (ABFs). Knaak and Filbert46 have also provided a somewhat qualitative discussion of the rela-
tionship between frequency-domain ABF and frequency-domain BSS. This section goes beyond their discussions
and offers an explanation of the effect of the collapse of the assumption of independence in BSS.

We can understand the behavior of BSS in terms of two sets of ABFs.7 An ABF can create only one null
towards the jammer when two microphones are used. BSS and ABFs form an adaptive spatial null in the jammer
direction, and extract the target.

5.1. Frequency-Domain Adaptive Beamformer (ABF)

Here, we consider a frequency-domain adaptive beamformer (ABF), which can adaptively remove a jammer
signal. Since the aim is to separate two signals S1 and S2 with two microphones, two sets of ABFs are used (see
Fig. 4). That is, an ABF that forms a null directivity pattern towards source S2 by using filter coefficients W11

and W12, and an ABF that forms a null directivity pattern towards source S1 by using filter coefficients W21 and
W22. Note that the direction of the target or the impulse responses from the target to the microphones should
be known, and that the ABF can adapt only when the jammer is active and the target is silent.

The separation mechanism of BSS is compared with that of ABF. Figure 5 shows the directivity patterns
obtained by BSS and ABF. In Fig. 5, (a) and (b) show directivity patterns of W obtained by BSS, and (c) and
(d) show directivity patterns of W obtained by ABF. When TR = 0, a sharp spatial null is obtained by both
BSS and ABF [see Figs. 5(a) and (c)]. When TR = 300 ms, the directivity pattern becomes duller for both BSS
and ABF [see Figs. 5(b) and (d)].
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Figure 5. Directivity patterns (a) obtained by BSS (TR=0 ms), (b) obtained by BSS (TR=300 ms), (c) obtained by ABF
(TR=0 ms), and (d) obtained by ABF (TR=300 ms).

Figure 6 shows the directivity pattern obtained by BSS for three sources with three microphones. We can see
that BSS forms two adaptive spatial nulls towards two jammers when three microphones are used, and extracts
one target.

If two sources are located in the same direction but at different distances, we cannot separate them solely
by the phase difference but we can separate them by the level difference at the microphones (near-field model).
Figure 7 shows the spatial gain patterns of the separation filters in one frequency bin (f = 1000 Hz) drawn
with the near-field model. The gain of the observed signal at microphone 1 is defined as 0 dB. We can see that
the separation filter forms a spot null beam that focuses on the interference signal. When the source signals
are located in different directions, a separation filter utilizes the phase difference between the input signals and
makes a directive null toward the interference signal, whereas both the phase and level differences are utilized to
make a regional null when signals come from the same direction.

6. DISCUSSION

BSS has been interpreted from a physical standpoint showing the equivalence between frequency-domain BSS and
two sets of microphone array systems, i.e., two sets of adaptive beamformers (ABFs).7 Convolutive BSS can be
understood in terms of multiple ABFs that generate statistically independent outputs, or more simply, outputs
with minimal crosstalk. An ABF can create only one null towards the jammer signal when two microphones are
used. BSS and ABFs form an adaptive spatial null in the jammer direction, and extract the target.

Because ABF and BSS mainly deal with sound from the jammer direction by making a null towards the
jammer, the separation performance is fundamentally limited.6 This understanding clearly explains the poor
performance of BSS in a real acoustic environment with a long reverberation. Moreover, If the sources are
not “independent,” their dependency results in bias noise to obtain the correct separation filter coefficients.
Therefore, the BSS performance is upper bounded by that of the ABF.6, 7

BSS has been shown to outperform a null beamformer that forms a steep null directivity pattern towards
a jammer on the assumption that the jammer’s direction is known.8, 47 It is well known that an adaptive
beamformer outperforms a null beamformer when there is a long reverberation. Our understanding also clearly
explains the result.

However, in contrast to the ABF, no assumptions regarding array geometry or source location need to be made
in BSS. BSS can adapt without any information on the source positions or period of source existence/absence.
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Figure 6. Directivity pattern obtained by BSS for three sources with three microphones (TR=130 ms).

This is because, instead of adopting a power minimization criterion that adapts the jammer signal out of the
target signal in ABF, a cross-power minimization criterion is adopted that decorrelates the jammer signal from
the target signal in BSS. It was shown that the least squares criterion of ABF is equivalent to the decorrelation
criterion of the outputs in BSS. The error minimization has been shown to be completely equivalent to a zero
search in the cross-correlation.7

Although the performance of the BSS is limited by that of the ABF, BSS has a major advantage over ABF.
A strict one-channel power criterion suffers from a serious crosstalk or leakage problem in ABF, whereas sources
can be simultaneously active in BSS. Also, ABF needs to know the array manifold and the target direction.
Thus, BSS can be regarded as an intelligent version of ABF.

The inspiration for the above can be found in two pieces of work. Weinstein et al.11 and Gerven and
Compernolle48 showed signal separation by using a noise cancellation framework with signal leakage into the
noise reference.

With the latest technique, we can separate three moving sources with three microphones in real time,49

separate six sources with eight microphones,50 and separate four sparse sources with two microphones.51

7. CONCLUSIONS

The blind source separation (BSS) of convolved mixtures of acoustic signals, especially speech, was examined.
Source signals can be extracted only from observed mixed signals, by achieving nonlinear, nonstationary, or
time-delayed decorrelation. The statistical technique of independent component analysis (ICA) was studied in
relation to acoustic signal processing.

BSS was interpreted from the physical standpoint showing the equivalence between frequency-domain BSS
and two sets of microphone array systems, i.e., two sets of adaptive beamformers (ABFs). Convolutive BSS can
be understood as multiple ABFs that generate statistically independent outputs, or more simply, outputs with
minimal crosstalk.

Because ABF and BSS mainly deal with sound from the jammer direction by making a null towards the
jammer, the separation performance is fundamentally limited. This understanding clearly explains the poor
performance of BSS in the real world with long reverberation. If the sources are not “independent,” their depen-
dency results in bias noise to obtain the correct separation filter coefficients. Therefore, the BSS performance is
upper bounded by that of the ABF.

However, in contrast to the ABF, no assumptions regarding array geometry or source location need to be made
in BSS. BSS can adapt without any information on the source positions or period of source existence/absence.
This is because, instead of adopting a power minimization criterion that adapts the jammer signal out of the
target signal in ABF, a cross-power minimization criterion is adopted that decorrelates the jammer signal from
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Figure 7. Example spatial gain patterns of separation filters (f = 1000 Hz)

the target signal in BSS. It was shown that the least squares criterion of ABF is equivalent to the decorrelation
criterion of the outputs in BSS. The error minimization was shown to be completely equivalent to a zero search
in the cross-correlation.

Although the performance of the BSS is limited by that of the ABF, BSS has a major advantage over ABF.
A strict one-channel power criterion has a serious crosstalk or leakage problem in ABF, whereas sources can be
simultaneously active in BSS. Also, ABF needs to know the array manifold and the target direction. Thus, BSS
can be regarded as an intelligent version of ABF.

The fusion of acoustic signal processing technologies and speech recognition technologies is playing a major
role in the development of user-friendly communication with computers, conversation robots, and other advanced
audio media processing technologies.
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