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Blind Source Separation of Convolutive Mixtures of Speech in
Frequency Domain

Shoji MAKINO†a), Hiroshi SAWADA†, Ryo MUKAI†, Members, and Shoko ARAKI†, Nonmember

SUMMARY This paper overviews a total solution for frequency-
domain blind source separation (BSS) of convolutive mixtures of audio
signals, especially speech. Frequency-domain BSS performs independent
component analysis (ICA) in each frequency bin, and this is more effi-
cient than time-domain BSS. We describe a sophisticated total solution
for frequency-domain BSS, including permutation, scaling, circularity, and
complex activation function solutions. Experimental results of 2× 2, 3× 3,
4 × 4, 6 × 8, and 2 × 2 (moving sources), (#sources × #microphones) in a
room are promising.
key words: blind source separation, convolutive mixtures, independent
component analysis, frequency-domain BSS, microphone array, adaptive
beamformer

1. Introduction

Blind source separation (BSS) [1]–[3] is an approach for
estimating source signals by using only the information of
mixed signals observed at each input channel. The estima-
tion is performed blindly, i.e., without possessing informa-
tion on each source, such as its location and active time.
Typical examples of such source signals include mixtures
of simultaneous speech signals that have been picked up by
several microphones. Its potential audio signal applications
include speech enhancement for speech recognition, tele-
conferences, and hearing aids. In such applications, signals
are mixed in a convolutive manner with reverberations. This
makes the BSS problem difficult. We need very long finite
impulse response (FIR) filters (e.g., around a thousand taps
for 8 kHz sampling) to separate the acoustic signals mixed
under such conditions.

Independent component analysis (ICA) [4], [5] is a ma-
jor statistical tool for dealing with the BSS problem. If sig-
nals are mixed instantaneously, we can directly employ an
instantaneous ICA algorithm to separate them. However,
signals are mixed in a convolutive manner in the applica-
tions mentioned above. Therefore, we need to extend the
ICA/BSS technique so that it is applicable to convolutive
mixtures.

The first approach is time-domain BSS, where ICA is
directly extended to the convolutive mixture model [6]–[11].
This approach is theoretically sound and achieves good sep-
aration once an algorithm converges, since the algorithm
correctly evaluates the independence of separated signals.
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However, an ICA algorithm for convolutive mixtures is not
as simple as an ICA algorithm for instantaneous mixtures,
and is computationally expensive for long FIR filters be-
cause it includes convolution operations.

The second approach is frequency-domain BSS, where
complex-valued ICA for instantaneous mixtures is em-
ployed in each frequency bin [12]–[29]. The merit of this
approach is that the ICA algorithm remains simple and
can be performed separately at each frequency. Also, any
complex-valued instantaneous ICA algorithm can be em-
ployed with this approach. The computational time for BSS
can be reduced by employing a fast algorithm such as Fas-
tICA [30], [31], and/or by performing parallel computation
for multiple frequency bins. However, the permutation am-
biguity of the ICA solution becomes a serious problem. We
need to align the permutation in each frequency bin so that a
separated signal in the time domain contains frequency com-
ponents from the same source. This problem is well known
as the permutation problem of frequency-domain BSS [12]–
[21], [25]–[27], which is the main focus of this paper. An-
other problem relates to the circularity effect of discrete fre-
quency representation. Frequency responses calculated in
the frequency domain assume a periodic time-domain filter
for their implementation. However, such a periodic filter
is unrealistic, and we usually use its one-period realization
for the separation filter. Therefore, the frequency responses
should be smoothed so that the one-period realization does
not rely on the circularity effect [18], [29]. This paper also
discusses this problem.

The third approach uses both the time and frequency
domains. In some time-domain BSS methods, convolu-
tions in the time domain are speeded up by the overlap-save
method in the frequency domain [10], [32]. Furthermore, in
some methods [33]–[35], filter coefficients are updated in
the frequency domain while nonlinear functions for evaluat-
ing independence are applied in the time domain. The per-
mutation problem does not occur in either case since the in-
dependence of separated signals is evaluated in the time do-
main. Nor does the circularity problem occur when there is
an appropriate constraint for filter coefficients [36] by such
means as rectangular windowing. However, the algorithm
moves back and forth between the two domains at every
iteration, spending non-negligible time on discrete Fourier
transforms (DFTs) and inverse DFTs. Therefore, we con-
sider that the permutation and circularity problems are in-
evitable if we hope to benefit from the merits of frequency-
domain BSS.
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Fig. 1 BSS system configuration.

This paper deals with the second approach, i.e.,
frequency-domain BSS. We begin by formulating the BSS
problem for convolutive mixtures in Sect. 2. Section 3 pro-
vides an overview of frequency-domain BSS. We then
present several important techniques that enable this ap-
proach to achieve effective separation of many sources
mixed in a reverberant environment. Section 4 discusses
complex-valued ICA for instantaneous mixtures. Under-
standing the separation mechanism of BSS in Sect. 5 greatly
helps us to cope with the problem. Section 7 presents a
method for solving the permutation problem, which is the
most important technique for frequency-domain BSS. To
solve the permutation problem, information on source lo-
cation is very useful. This can be estimated from ICA so-
lutions as shown in Sect. 6. The key point with respect to
source localization is that the estimation of the mixing sys-
tem is easily obtained. This is because the ICA algorithm is
just for instantaneous mixtures, and therefore it is straight-
forward to calculate the (pseudo)-inverse of a separation ma-
trix, which corresponds to the mixing system. This fact also
makes it easy to solve the scaling ambiguity as shown in
Sect. 8. Section 9 discusses a spectral smoothing technique
designed to solve the circularity problem. The experimen-
tal results shown in Sect. 10 are very promising. Section 11
concludes this paper.

2. BSS for Convolutive Mixtures

In the case of audio source separation, several sensor micro-
phones are placed in different positions so that each records
a mixture of the original source signals at a slightly different
time and level. In the real world, where the source signals
are speech and the mixing system is a room, the signals that
are picked up by the microphones are affected by reverber-
ation. Suppose that N source signals si(t) are mixed and
observed at M sensors

x j(t) =
N∑

i=1

∑
l

h ji(l) si(t − l), j = 1, . . . ,M, (1)

where h ji(l) represents the impulse response from source i to
sensor j. We assume that the number of sources N is known
or can be estimated in some way (e.g., by [37]), and the

Fig. 2 Task of blind source separation of speech signals.

Fig. 3 BSS for convolutive mixtures.

number of sensors M is more than or equal to N (N ≤ M).
The separation system typically consists of a set of FIR

filters wi j(l) of length L to produce N separated signals

yi(t) =
M∑
j=1

L−1∑
l=0

wi j(l) x j(t − l), i = 1, . . . ,N (2)

at the outputs. The separation filters are estimated so that the
separated signals become mutually independent. The sepa-
ration filters wi j(l) should be obtained blindly, i.e., without
knowing si(t) or h ji(l).

A two-input, two-output convolutive BSS problem, i.e.,
N = M = 2, is shown in Figs. 1 and 2. It is assumed that the
source signals s1 and s2 are mutually independent. This as-
sumption usually holds for sounds in the real world. There
are two microphones which pick up the mixed speech. Only
the observed signals x1 and x2 are available, and they are
correlated. The goal is to adapt the separation systems wi j

and to extract y1 and y2 so that they are mutually indepen-
dent. With this operation, we can obtain s1 and s2 in the
output y1 and y2. No information is needed on the source
positions or period of source existence/absence. Nor is any
information on the mixing systems h ji(l) required. Thus,
this task is called blind source separation.

Figure 3 shows a block diagram of BSS. The ideal goal
of BSS is to separate and deconvolve the mixtures x j(t), and
to obtain a delayed version of source si(t) at each output
i. However, this is very difficult if si(t) is a colored signal,
which is the case when separating natural sounds such as
speech [9]. A practical alternative goal [8], [11] is to obtain
the convolved version of a source si(t) measured at a sensor
Ji:

yi(t) =
∑

l

hJii(l) si

(
t − L

2
− l
)
, (3)

where the sensor index Ji can be selected according to each
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Fig. 4 Flow of frequency-domain BSS.

output i. The way used to attain this goal will be discussed
in Sect. 8.

3. Overview of Frequency-Domain Approach

Figure 4 shows the flow of frequency-domain BSS. Time-
domain signals x j(t) sampled at frequency fs are converted
into frequency-domain time-series signals x j( f , τ) with an
L-point short-time Fourier transform (STFT):

x j( f , τ) =

L
2 −1∑

r=− L
2

x j(τ + r) win(r) e− 2π f r, (4)

where f ∈ {0, 1
L fs, . . . ,

L−1
L fs} is a frequency, win(r) is a

window that tapers smoothly to zero at each end, such as a
Hanning window 1

2 (1 + cos 2πr
L ), and τ is a new index repre-

senting time.
The remaining operations are performed in the fre-

quency domain. The advantage is that the convolutive mix-
tures in (1) can be approximated as instantaneous mixtures
in each frequency bin:

x j( f , τ) =
N∑

i=1

hji( f )si( f , τ), (5)

where hji( f ) is the frequency response from source i to sen-
sor j, and si( f , τ) is a frequency-domain time-series signal
of si(t) obtained by the same operation as (4). The vector
notation of the mixing model (5) is

x( f , τ) =
N∑

i=1

hi( f )si( f , τ), (6)

where x = [x1, . . . , xM]T is a sensor sample vector and hi =

[h1i, . . . , hMi]T is the vector of the frequency responses from
source si to all M sensors.

To obtain the frequency responses wi j( f ) of separation
filters wi j(l) in (2), complex-valued ICA

y( f , τ) =W( f )x( f , τ) (7)

is solved, where y = [y1, . . . , yN]T is a vector of separated
signals, W = [w1, . . . ,wN]H is an N × M separation matrix,
wi = [wi1, . . . , wiM]H , and wi j = [W]i j. The details of the
ICA algorithm are discussed in Sect. 4.

Calculating the Moore-Penrose pseudoinverse W+ ( re-
duced to the inverse W−1 if N = M) of W as

[a1, · · · , aN] =W+, (8)

ai = [a1i, . . . , aMi]
T , (9)

is very useful for source localization and scaling alignment,
as described in Sects. 6 and 8, respectively. It should be
noted that it is not difficult to make W invertible by using
an appropriate ICA procedure (for an example, see Sect. 4).
By multiplying both sides of (7) by W+, the sensor sample
vector x(τ) is represented by a linear combination of basis
vectors a1, . . . , aN :

x( f , τ) =
N∑

i=1

ai( f )yi( f , τ). (10)

It is well-known that an ICA solution (7) has permuta-
tion and scaling ambiguities: even if we permute the rows
of W( f ) or multiply a row by a constant, it is still an ICA
solution. In matrix notation,

W( f )← Λ( f )P( f )W( f ) (11)

is also an ICA solution for any permutation P( f ) and diag-
onal Λ( f ) matrix. Permutation alignment is to decide P( f )
so that a time-domain separated signal contains frequency
components from the same source. Section 7 presents a
method for solving this problem. Scaling alignment is to
decide Λ( f ) so that a time-domain separated signal satisfies
the goal (3), as discussed in Sect. 8.

Then, we perform spectral smoothing so that a time-
domain separation filter tapers smoothly to zero at each end.
This is typically achieved by multiplying the time-domain
filter by a Hanning window, which is equivalent to smooth-
ing the frequency-domain separation matrices as

W( f )← 1
4

[ W( f −∆ f ) + 2W( f ) +W( f +∆ f ) ],

where ∆ f = fs

L is the difference from the adjacent fre-
quency. However, this smoothing changes the ICA solution
and causes an error. Section 9 discusses the error and how
to minimize it.

Finally, separation filters wi j(l) are obtained by apply-
ing inverse DFT to wi j( f ) = [W( f )]i j:

wi j(l) =
∑

f∈{0, 1
L fs, ...,

L−1
L fs}
wi j( f )e 2π f (l− L

2 ),

where l = 0, . . . , L−1. The reason for using e 2π f (l− L
2 ) instead

of e 2π f l is to make the separation filter wi j(l) causal. Then,
the separated signals yi(t) are produced by (2).

4. Complex-Valued ICA

This section discusses how to solve the ICA Eq. (7). One
of the advantages of frequency-domain BSS is that we can
employ any ICA algorithm for instantaneous mixtures, such
as the information maximization approach (InfoMax) [38]
combined with the natural gradient [39], FastICA [30],
JADE [40], or an algorithm based on the non-stationarity of
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signals [41]. Here, we explain a procedure that was shown
to be efficient by the experiments described in Sect. 10. The
procedure consists of the following three steps:

1. Dimension reduction and whitening by eigenvalue de-
composition

2. ICA by a unitary matrix (FastICA)
3. ICA by InfoMax combined with the natural gradient

The first step performs a linear transformation

z(τ) = Vx(τ)

for M-dimensional sensor observations x(τ) such that the
dimension of z(τ) is reduced (if necessary) to the number
of sources N and z(τ) is spatially whitened (sphered), i.e.,
〈z(τ)z(τ)H〉τ = I, where I is the N × N identity matrix. The
linear transformation V is typically obtained by eigenvalue
decomposition. Let λ1 ≥ . . . ≥ λM be sorted eigenval-
ues of the spatial correlation matrix R = 〈x(τ)x(τ)H〉τ and
e1, . . . , eM be their corresponding eigenvectors. Then, the
linear transformation is

V = D−1/2EH ,

where D = diag(λ1, . . . , λN) is the diagonal matrix of the N
largest eigenvalues, E = [e1, . . . , eN] is the matrix of their
corresponding eigenvectors, and ei = [e1i, . . . , eMi]T .

This step has practical importance for the following
two reasons. First, the outputs y(τ) of ICA (7) adhere to
the signal subspace that is identified by the N eigenvec-
tors e1, . . . , eN . This means that the following ICA algo-
rithm does not pursue its solution in the noise subspace,
which consequently stabilizes the algorithm and also has
a noise/reverberation reduction effect [18]. A geometrical
interpretation of the dimension reduction is given in [28].
Second, the whitening 〈zzH〉τ = I is necessary for FastICA,
and also provides an efficient convergence for InfoMax even
if the step size is constant over all frequency bins.

The second step performs ICA in a constrained form:

y(τ) = Bz(τ),

where B is an N × N unitary matrix: BBH = I. This is per-
formed by a complex-valued version of FastICA [30], [31].
It is very efficient because a fairly good solution can be ob-
tained with only several iterations. The efficiency comes
from the fact that z is whitened and B is unitary. However,
there remains room for improving the solution by using an-
other ICA algorithm. One of the reasons is that the output y
of FastICA is whitened 〈y( f , τ)y( f , τ)H〉τ = I and therefore
uncorrelated, whereas original sources s1( f , τ), . . . , sN( f , τ)
are not always completely uncorrelated with a limited num-
ber of samples.

The third step improves the ICA solution obtained so
far as an initial value

y(τ) =Wx(τ) = BVx(τ)

by employing another ICA algorithm that does not have the
unitary constraint. Based on the use of InfoMax combined

Fig. 5 Directivity patterns (a) obtained by BSS (TR=0 ms), (b) obtained
by BSS (TR=300 ms), (c) obtained by ABF (TR=0 ms), and (d) obtained by
ABF (TR=300 ms).

with the natural gradient, a separation matrix W is gradually
improved by the learning rule:

W←W + µ [I − 〈Φ(y(τ))y(τ)H〉τ] W, (12)

where µ is a step-size parameter. Φ(y) = [Φ(y1), . . . ,
Φ(yN)]T is an element-wise nonlinear function defined by

Φ(yi) = − ∂
∂yi

log p(yi), (13)

where p(yi) is the probability density function (pdf) of
a complex-valued signal yi = |yi| e ·arg(yi). Since yi is a
frequency-domain signal whose phase can be shifted arbi-
trarily by shifting the STFT window position (4), a feasi-
ble assumption is that the pdf is independent of the phase
p(yi) = α · p(|yi|), where α is a constant. This assumption
reduces (13) to

Φ(yi) = ϕ(|yi|) e ·arg(yi), (14)

ϕ(|yi|) = − ∂
∂|yi| log p(|yi|). (15)

If we assume the Laplacian distribution p(|yi|) = 1
2 e−|yi |,

which is typical for speech modeling, we have ϕ(|yi|) = 1
and thus a simple nonlinear function

Φ(yi) = e ·arg(yi).

A nonlinear function of the form (14) has a better con-
vergence property [22] than one where the nonlinearity
is applied separately to the real and imaginary parts of a
complex-valued signal yi.

5. Separation Mechanism of BSS

The mechanism of BSS based on ICA has been shown to
be equivalent to that of an adaptive microphone array sys-
tem, i.e., N sets of adaptive beamformers (ABFs) with an
adaptive null directivity aimed in the direction of unneces-
sary sounds [23], [24]. From the equivalence between BSS
and ABF, it becomes clear that the physical behavior of BSS
reduces the jammer signal by making a spatial null toward
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the jammer, and extract the target.
The separation performance of BSS is compared with

that of ABF. Figure 5 shows the directivity patterns obtained
by BSS and ABF. In Fig. 5, (a) and (b) show directivity pat-
terns by W obtained by BSS, and (c) and (d) show directiv-
ity patterns by W obtained by ABF. When TR = 0, a sharp
spatial null is obtained by both BSS and ABF [see Figs. 5(a)
and (c)]. When TR = 300 ms, the directivity pattern becomes
duller for both BSS and ABF [see Figs. 5(b) and (d)].

BSS can be regarded as an intelligent version of ABF
in the sense that it can adapt without any information on the
source positions or period of source existence/absence [1].

6. Source Localization

This section presents a source localization method by an-
alyzing the ICA solution (7) or equivalently (10). The in-
formation on source locations can be used to solve the per-
mutation problem, as described in the next section. Many
source localization methods have been proposed. A widely
used method is MUSIC (MUltiple SIgnal Classification)
[42], which employs subspace analysis with second-order
statistics. The ICA-based method, on the other hand, em-
ploys higher-order statistics (or multiple second-order statis-
tics based on non-stationarity). In this sense, the ICA-
based method has certain advantages over the subspace-
based method [43].

The source localization technique that employs ICA
is a by-product of research on frequency-domain BSS.
Direction-of-arrival (DOA) estimation methods [19]–[21]
have been proposed that are based on beamforming theory
[44]. They calculate directivity patterns as shown in Fig. 5
from the separation matrix W, and then search the null di-
rections, which correspond to the directions of sources [24].
However, it is simpler and more effective to estimate the di-
rections directly from the basis vectors ai, which are given
by the pseudoinverse of W. The source localization method
[25]–[27], [43] presented in this section is based on this idea.
Such an idea was taken for granted in research on blind iden-
tification [45], [46], where the mixing system is estimated
directly.

6.1 Basic Theory of Nearfield Model

Let us assume a mixing model that is suitable for source
localization. Although the mixing model (1) in the time do-
main is a multi-path mixing model, we approximate the fre-
quency response hji( f ) in (5) with a nearfield (direct-path)
model (Fig. 6):

hji( f ) ≈ 1
||qi − p j||e

2π f c−1(||qi−p j ||−||qi ||), (16)

where p j and qi are 3-dimensional vectors representing the
locations of sensor j and source i, respectively, and c is the
propagation velocity of the signals. We assume that the am-
plitude is attenuated based on the distance ||qi−p j||. We also
assume that the phase depends on the difference between the

Fig. 6 Nearfield (direct-path) model.

distances ||qi − p j|| − ||qi|| from the source to the sensor and
to the origin o = [0, 0, 0]T . This makes the phase zero at
the origin. If the phase 2π f c−1(||qi − p j|| − ||qi||) is outside
the range (−π, π), this model suffers from spatial aliasing.
Therefore, the model is feasible as long as the condition

f <

∣∣∣∣∣∣
c

2 · ( ||qi − p j|| − ||qi|| )
∣∣∣∣∣∣

is satisfied.
The ICA-based source localization discussed in this

section estimates the location qi of source i from informa-
tion on sensor locations p j and the separation matrix W( f )
obtained by ICA (7). Let us assume here that the decom-
position (10) of observations x( f , τ) has been obtained in
each frequency bin by the pseudoinverse of W( f ). By com-
paring (6) and (10), we observe the following fact. If the
ICA algorithm works well and the outputs y1, . . . , yN are
the estimation of the sources s1, . . . , sN , then the basis vec-
tors a1, . . . , aN are also estimations of the mixing vectors
h1, . . . , hN up to the permutation and scaling ambiguity.

Following the model (16), the ratio between two ele-
ments aji, aj′i of the same basis vector ai provides the key
equation for source localization:

aji

a j′i
=
αih ji

αih j′i

=
||qi − p j′ ||
||qi − p j|| e

2π f c−1(||qi−p j ||−||qi−p j′ ||), (17)

where the scaling ambiguity αi is canceled out by calcu-
lating the ratio. The permutation ambiguity still remains.
However, if we estimate the location qi for all i = 1, . . . ,N,
the set of all estimated locations does not depend on the per-
mutation.

With respect to the phase differences, the set of vectors
qi in the argument of (17),

||qi − p j|| − ||qi − p j′ || = arg(aji/aj′i)

2π f c−1
, (18)

defines a surface where the difference between the distances
from p j and p j′ is constant. The surface is one sheet of a
two-sheet hyperboloid.

Alternatively, with respect to the level differences, the
set of vectors qi in the modulus of (17),

||qi − p j′ ||
||qi − p j|| =

∣∣∣∣∣∣
aji

a j′i

∣∣∣∣∣∣ , (19)
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Fig. 7 Source localization by intersection of two hyperboloids and a
sphere.

Fig. 8 Farfield model.

defines a sphere where the ratio of the distances from p j and
p j′ is constant. Therefore, with these two Eqs. (18) and (19),
we can estimate the possible location qi of source si. Such
hyperboloid and sphere are defined by a pair of sensors j
and j′. If we select another pair of sensors, a different hy-
perboloid and sphere are obtained. In this way, the location
qi is estimated as the intersection of several hyperboloids
and spheres. An example is shown in Fig. 7.

6.2 DOA Estimation with Farfield Model

Although it is useful to estimate a 3-dimensional location,
calculating the intersections of hyperboloids and spheres is
computationally demanding. In many cases it is sufficient to
estimate just the direction-of-arrival (DOA) of source si. If
we assume the source location qi is far from sensors p j and
p j′ , (18) can be approximated as a farfield model (Fig. 8):

(p j − p j′ )
T qi

||qi|| =
arg(aji/aj′ i)

2π f c−1
, (20)

and the cosine of angle θ j j′
i between the two vectors qi and

p j − p j′ can be calculated as

cos θ j j′
i =

(p j − p j′ )T qi

||p j − p j′ || · ||qi||
=

arg(aji/aj′i)

2π f c−1||p j − p j′ || . (21)

The set of vectors qi that satisfy (20) represents a cone

Fig. 9 3-dimensional arrangement of eight microphones and three loud-
speakers (upper) and DOA estimation results for this case (lower).

[26], which is the asymptotic surface of the corresponding
hyperboloid (18). To estimate the DOA of a source, the in-
tersections of several cones should be obtained. Let us as-
sume that we select u cones whose corresponding sensor
pairs are ( j1, j′1), . . . , ( ju, j′u). The set of Eqs. (20) for u sen-
sor pairs is represented as

D
qi

||qi|| =
ri

2π f c−1
, (22)

where

D = [p j1−p j′1 , . . . , p ju−p j′u ]T,

ri = [ arg(aj1i/aj′1i), . . . , arg(ajui/aj′ui) ]T .

In practical situations, there is no exact solution for (22) be-
cause the u conditions do not coincide exactly. Therefore,
we typically solve it in the least-square sense by using the
Moore-Penrose pseudoinverse [27]:

qi

||qi|| =
D+ri

2π f c−1
. (23)

If rank(D) ≥ 3, the set of vectors qi that satisfy (23) rep-
resents a line in 3-dimensional space, which represents the
DOA of a source i.

The upper photo in Fig. 9 shows the case where
eight microphones and three loudspeakers are arranged 3-
dimensionally, and the lower plot shows the DOA estima-
tion results for this case. Each point shows a location vector
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qi( f ) that is normalized to unit norm qi( f ) ← qi( f )
||qi( f )|| . The

estimations are obtained for all frequencies f and all output
indexes i. As shown in the plot, they form clusters, each of
which corresponds to the location of each source.

If the sensor and source locations are limited to a 2-
dimensional plane, the dimensionality of location vectors,
such as pi and qi, can be reduced to two. In this case,
rank(D) ≥ 2 is sufficient to reach a solution in (23). More-
over, the DOA of source i can be represented simply by the
angle θi that satisfies

qi = [cos(θi), sin(θi)]
T , −180◦ < θi ≤ 180◦. (24)

Figure 15 shows the case where the sensor and source loca-
tions are limited to 2-dimensions. The DOA estimations in
this case are shown in Figs. 16 and 17.

If the sensors are arranged linearly and the potential
source location is in a 2-dimensional half-plane, which is
to one side of the sensor arrangement line, the angle θ j j′

i

(0◦ ≤ θ j j′
i ≤ 180◦) by (21) provides sufficient information

on the source location. For example, Fig. 13 shows DOA
estimation results for such a case with the conditions shown
in Fig. 12.

7. Permutation Alignment

This section discusses how to solve the permutation prob-
lem. Various methods have already been proposed. With
reference to the ICA Eq. (7) as well as to the decomposition
(10) of observations x( f , τ), we classify these methods into
four categories based on the following strategies:

1. Applying an operation to the separation matrix W( f ),
2. Utilizing the information on the separation matrix

W( f ) itself,
3. Utilizing the information on the basis vectors

a1( f ), . . . , aN( f ),
4. Utilizing the information on the separated signals
y1( f , τ), . . . , yN( f , τ).

The operation of the first strategy basically involves
smoothing the separation matrices in the frequency domain.
This has been realized by reducing the filter length by rect-
angular windowing in the time domain [10], [13]–[15], or by
averaging the separation matrices with adjacent frequencies
[13]. However, this operation makes the separation matrix
W( f ) different from the ICA solution (7), which may have
a detrimental effect on the separation performance. A pos-
sible way to solve this problem is to interleave the ICA up-
date, e.g., (12), and this operation until convergence. In this
sense, this strategy is related to the third approach to BSS
discussed in the Introduction.

The second category includes the beamforming ap-
proach [19]–[21], where the directivity patterns formed by
the separation matrix are analyzed to identify the DOA of
each source. The third category includes an approach that
utilizes the results of source localization with the basis vec-
tors [25]–[27], [46]. The theory and operation for source lo-
calization were discussed in Sect. 6. These two approaches

from the second and the third categories utilize basically the
same information because the separation matrix W( f ) and
the basis vectors a1( f ), . . . , aN( f ) are directly connected by
the pseudoinverse operation (8). However, the information
used in the third category is easier to handle since it directly
represents the mixing system (6). The last category includes
an approach that employs the inter-frequency correlations of
output signal envelopes [16], [17]. This is particularly effec-
tive for a non-stationary signal such as speech.

In the next two subsections, we explain the approaches
of the third and the fourth categories, respectively. Since
these two approaches have different but complementary
characteristics, integrating them is a good way to pursue a
better solution to the permutation problem [25]. Subsection
7.3 presents a method that effectively integrates the two ap-
proaches to solve the permutation problem in a better way.
In the following subsections, let Π f be a permutation corre-
sponding to the inverse P−1( f ) of the permutation matrix of
(11). The permutation problem can be formulated to obtain
Π f for every frequency f , which is a mapping from source
index k to output index i:

i = Π f (k).

7.1 Localization Approach

The basic idea of this approach is to estimate the locations
of sources and then cluster them to decide the permutation.
ICA-based source localization (Sect. 6) estimates the loca-
tion qi( f ) of a source that corresponds to the i-th basis vec-
tor ai( f ) for each frequency f . Let the following function
localize estimate the location in this way:

qi( f ) = localize( f , ai( f )) .

If just the DOA estimation is adequate, the location vector
qi( f ) should be normalized to the unit norm qi( f )← qi( f )

||qi( f )|| .
If the locations of sensors and sources are limited to a 2-
dimensional plane, we simply obtain θi( f ) that satisfies (24)
as a DOA estimation.

Then, we employ a clustering algorithm to find N clus-
ters C1, . . . ,CN formed by estimated locations qi( f ) or θi( f ).
Each Ck corresponds to the location of source k. Let the fol-
lowing function clustering perform clustering for all of the
estimated locations qi( f ) and return the centroid ck and the
variance σ2

k of each cluster Ck:

[c1, σ1, . . . , cN , σN]

= clustering (∀ f , q1( f ), . . . , qN( f )),

ck =
∑
q∈Ck

q
|Ck | ,

σ2
k =
∑
q∈Ck

||ck − q||2
|Ck | ,

where |Ck | is the number of vectors in the cluster. The opti-
mization criterion for clustering is to minimize the total sum∑N

k=1 σ
2
k of the variances. This optimization is efficiently
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Fig. 10 Envelopes of two output signals at different frequencies.

performed with the k-means clustering algorithm [47]. Once
we have N clusters, permutations for all frequencies f can
be decided by

Π f = argminΠ

N∑
k=1

||ck − qΠ(k)( f )||2. (25)

The advantage of this source localization approach is
that it is very simple to decide the permutation Π f for each
frequency once the centroids of N clusters are obtained.
However, the downside of this approach is that the estimated
locations or DOAs, and thus the permutations Π f are not ac-
curate for some frequencies. Such situations typically hap-
pen at low frequencies, where the phase difference caused
by the sensor spacing is very small, as shown in Fig. 13.

7.2 Correlation Approach

This subsection presents an approach to permutation align-
ment based on the inter-frequency correlation of separated
signals. The correlation should be calculated for the am-
plitude |yi( f , τ)| or (log-scaled) power |yi( f , τ)|2 of sepa-
rated signals. The correlation of raw complex-valued sig-
nals yi( f , τ) would be very low due to the STFT property.
Here, we use the amplitude (so-called envelope)

v
f
i (τ) = |yi( f , τ)|

of a separated signal yi( f , τ). The correlation of two se-
quences x(τ) and y(τ) is usually calculated by the correlation
coefficient

cor(x, y) = (µx·y − µx · µy)/(σx · σy),
where µx is the mean and σx is the standard deviation of x.
Based on this definition, cor(x, x) = 1, and cor(x, y) = 0 if x
and y are uncorrelated.

Envelopes have high correlations at neighboring fre-
quencies if separated signals correspond to the same source
signal. Figure 10 shows an example. Two envelopes v1562

1

and v1566
1 , as well as v1562

2 and v1566
2 , are highly correlated.

Thus, calculating such correlations helps us to align permu-
tations.

A simple criterion for deciding Π f is to maximize the
sum of the correlations between neighboring frequencies
within distance δ:

Π f = argmaxΠ
∑
|g− f |≤δ

N∑
i=1

cor(v f
Π(i), v

g
Πg(i)

), (26)

where Πg is the permutation at frequency g. This criterion
is based on local information and has a drawback in that
mistakes in a narrow range of frequencies may lead to the
complete misalignment of the frequencies beyond the range.

To avoid this problem, the method in [17] does not limit
the frequency range in which correlations are calculated. It
decides permutations one by one based on the criterion

Π f = argmaxΠ

N∑
i=1

cor

v
f
Π(i),
∑
g∈F
v
g
Πg(i)

 ,

where F is a set of frequencies in which the permutation
is decided. This method assumes high correlations of en-
velopes even between frequencies that are not close neigh-
bors. This assumption is not satisfied for all pairs of fre-
quencies, e.g., v1566

i and v3516
i in Fig. 10 do not have a high

correlation. Therefore, this method still has the drawback
of permutations possibly being misaligned at many frequen-
cies.

If a source signal has a harmonic structure, as in the
case of speech, there are strong correlations between the
envelopes of a fundamental frequency f and its harmonics
2 f , 3 f , . . .. Therefore, maximizing the correlation among
harmonics is another idea for permutation alignment [25]:

Π f = argmaxΠ
∑
g∈H( f )

N∑
i=1

cor(v f
Π(i), v

g
Πg(i)

), (27)

where H( f ) provides a set of harmonic frequencies of f .
The permutation accuracy improves if we take the signal’s
harmonic structure into consideration. However, maximiz-
ing (26) and (27) simultaneously is not very straightforward
and is computationally expensive.

7.3 Integrated Method

This subsection presents a method that integrates the two ap-
proaches discussed in the last two subsections. The intention
behind this integration is to solve the permutation problem
robustly and precisely. Let us review the characteristics of
the above two approaches.

• robustness: The localization approach is robust since
a misalignment at one frequency does not affect other
frequencies. The correlation approach is not robust
since a misalignment at one frequency affects the re-
sults of other frequencies and may cause consecutive
misalignments.

• preciseness: The localization approach is not precise
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since the evaluation is based on a direct-path approxi-
mation (16) of the mixing system. The correlation ap-
proach is precise as long as signals are well separated
by ICA, since the measurement is based on the sepa-
rated signals themselves.

To benefit from both advantages, namely the robustness of
the localization approach and the preciseness of the corre-
lation approach, the integrated method first decides permu-
tations with the localization approach and then refines the
solution with the correlation approach. An implementation
of the integrated method consists of the following four steps
[25]:

1. Decide the permutations by the localization approach
(25) at certain frequencies where the confidence of
source localization is sufficiently high,

2. Decide the permutations based on neighboring corre-
lations (26) as long as the criterion gives a clear-cut
decision,

3. Decide the permutations at certain frequencies where
the correlation among harmonics (27) is sufficiently
high,

4. Decide the permutations for the remaining frequencies
based on neighboring correlations (26).

The key to the first step is fixing a permutation only if
the confidence of source localization is sufficiently high. We
assume that the confidence is high if the squared distance be-
tween an estimated location and its corresponding centroid
is smaller than the variance, i.e., ||ck − qΠ(k)( f )||2 < σ2

k . In
the second step, permutations are decided one by one for the
frequency f where the sum of the correlations with fixed fre-
quencies g ∈ F within distance |g − f | ≤ δ is the maximum.
This is repeated as long as the maximum correlation sum is
larger than a threshold thcor. In the third step, the permu-
tations are decided for frequencies f where the sum of the
correlations among harmonics is larger than a threshold thha.
The last step decides the permutations for the remaining fre-
quencies with the same criterion as the second step.

Let us discuss the advantages of the integrated method.
The main advantage is that it does not cause a large mis-
alignment as long as the permutations fixed by the local-
ization approach are correct. Moreover, the correlation part
compensates for the lack of preciseness of the localization
approach. The correlation part consists of three steps (step
2,3,4) for two reasons. First, the harmonics part works well
if most of the other permutations are fixed. Second, the
method becomes more robust by quitting step 2 if there is
no clear-cut decision. With this structure, we can avoid
fixing the permutations for consecutive frequencies with-
out high confidence. As shown in the experimental results
(Sect. 10), this integrated method is effective in separating
many sources.

8. Scaling Alignment

The scaling ambiguityΛ( f ) in (11) is easily solved by calcu-
lating the (pseudo)-inverse of a separation matrix W( f ) [8],

Fig. 11 Impulse responses uik(l) obtained with periodic filters (above)
and with their one-period realization (below).

[17]. The frequency-domain counterpart of the BSS goal (3)
is

yi( f , τ) = hJii( f )si( f , τ), (28)

where Ji can be selected according to each output i but
should be the same for all frequencies f . Let us assume
that the ICA and the permutation problem have been solved.
Then the ai term in (10) is close to the hi term in (6):

hi( f )si( f , τ) ≈ ai( f )yi( f , τ). (29)

By substituting (28) into (29), we have the condition for
scaling alignment:

hi( f ) ≈ ai( f )hJii( f )⇔ aJii( f ) ≈ 1.

This condition, i.e., aJii( f ) = 1, is attained by

W( f )← Λ( f )W( f ),

Λ( f ) = diag(aJ11( f ), . . . , aJN N( f )),

where aji( f ) = [W+( f )] ji is an element of the pseudoinverse
of W( f ).

9. Spectral Smoothing

The frequency-domain BSS described in this paper is influ-
enced by the circularity of discrete frequency representation.
The circularity refers to the fact that frequency responses
sampled at L points with an interval fs/L ( fs: sampling fre-
quency) represent a periodic time-domain signal whose pe-
riod is L/ fs. Since this filter is unrealistic, we usually use
its one-period realization. However, such one-period filters
may cause a problem. Figure 11 shows impulse responses
from a source sk(t) to an output yi(t) defined by (39). Re-
sponses on the left u11(l) correspond to the extraction of a
target signal, and those on the right u14(l) correspond to the
suppression of an interference signal. The upper responses
are obtained with infinite-length filters, and the lower ones
with one-period filters. We can see that the one-period fil-
ters create spikes, which distort the target signal and degrade
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the separation performance. Note that these spikes are in-
evitable in the frequency-domain BSS since we have an ICA
solution in the frequency domain.

9.1 Windowing

To solve this problem, we need to control the frequency re-
sponses wi j( f ) so that the corresponding time-domain filter
wi j(l) does not rely on the circularity effect whereby adja-
cent periods work together to perform some filtering. The
most widely used approach is spectral smoothing, which is
realized by multiplying a window g(l) that tapers smoothly
to zero at each end, such as a Hanning window g(l) =
1
2 (1 + cos 2πl

L ). This makes the resulting time-domain fil-
ter wi j(l) · g(l) fit length L and have small amplitude around
the ends [18]. As a result, the frequency responses wi j( f )
are smoothed as

w̃i j( f ) =
fs−∆ f∑
φ=0

g(φ)wi j( f − φ),

where g( f ) is the frequency response of g(l) and ∆ f = fs

L .
If a Hanning window is used, the frequency responses are
smoothed as

w̃i j( f ) =
1
4

[wi j( f −∆ f ) + 2wi j( f ) + wi j( f +∆ f )], (30)

since the frequency responses g( f ) of the Hanning window
are g(0) = 1

2 , g(∆ f ) = g( fs−∆ f ) = 1
4 , and zero for the other

frequency bins.
The windowing successfully eliminates the spikes.

However, it changes the frequency response from wi j( f ) to
w̃i j( f ) and causes an error. Let us evaluate the error for
each row wi( f ) = [wi1( f ), . . . , wiM( f )]T of the ICA solution
W( f ). The error is

ei( f ) = min
αi

[w̃i( f ) − αiwi( f )]

= w̃i( f ) − w̃i( f )Hwi( f )
||wi( f )||2 wi( f ), (31)

where w̃i( f ) = [w̃i1( f ), . . . , w̃iM( f )]T and αi is a complex-
valued scalar representing the scaling ambiguity of the ICA
solution. The minimization minαi is based on least-squares,
and can be represented by the projection of w̃i to wi. We can
evaluate the error for the Hanning window case by substitut-
ing (30) for w̃ of (31):

ei( f ) =
1
4

[ e−i ( f ) + e+i ( f ) ], (32)

where

e−i ( f ) = wi( f −∆ f ) − wi( f −∆ f )Hwi( f )
||wi( f )||2 wi( f ), (33)

e+i ( f ) = wi( f +∆ f ) − wi( f +∆ f )Hwi( f )
||wi( f )||2 wi( f ). (34)

This e−i (or e+i ) represents the difference between two vectors

wi( f ) and wi( f −∆ f ) (or wi( f +∆ f )). Since these differences
are usually not very large, the error ei does not seriously af-
fect the separation if we use a Hanning window for spectral
smoothing.

9.2 Minimizing Error by Adjusting Scaling Ambiguity

Even if the error caused by the windowing is not very large,
the separation performance is improved by minimizing the
error [29]. The minimization is performed by adjusting the
scaling ambiguity of the ICA solution before the window-
ing. Let di( f ) be a complex-valued scalar for the scaling
adjustment:

wi( f )← di( f )wi( f ). (35)

We want to find di( f ) such that the error (31) is minimized.
The scalar di( f ) should be close to 1 to avoid any great
change in the predetermined scaling. Thus, an appropriate
total cost to be minimized is

J =
∑

f

Ji( f ), Ji( f ) =
||ei( f )||2
||wi( f )||2 + β|di( f ) − 1|2,

where β is a parameter indicating the importance of main-
taining the predetermined scaling. With the Hanning win-
dow, the error after the scaling adjustment is easily calcu-
lated by substituting (35) for (32):

ei( f ) =
1
4

[ di( f −∆ f )e−i ( f ) + di( f +∆ f )e+i ( f ) ], (36)

where e−i and e+i are defined in (33) and (34), respectively.
The minimization of the total cost can be performed

iteratively by

di( f ) = di( f ) − µ ∂J
∂di( f )

(37)

with a small step-size µ. With the Hanning window, the
gradient is

∂J
∂di( f )

=
∂Ji( f −∆ f )
∂di( f )

+
∂Ji( f +∆ f )
∂di( f )

+
∂Ji( f )
∂di( f )

=
ei( f −∆ f )He+i ( f −∆ f ) + ei( f +∆ f )He−i ( f +∆ f )

8 · ||wi( f )||2
+2β(di( f ) − 1). (38)

With equations from (36) to (38), we can optimize the scalar
di( f ) for the scaling adjustment, and minimize the error
caused by the spectral smoothing (30) with the Hanning
window.

10. Experimental Results

The performance of BSS is evaluated by a signal-to-
interference ratio (SIR), which is the power ratio between
the target component and the interference components. Let
uik(l) be the impulse responses from source sk(t) to separated
signal yi(t):
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Table 1 Separation performance with linear array.

#sources / position 2 / a c 3 / a b d 4 / a b c d
Spectral smoothing no yes no yes no yes

Average SIR at microphones (dB) 0.1 -2.9 -4.6
Average SIR of output (dB) 20.1 22.3 14.7 17.0 9.3 11.5

Execution time (s) 5.2 5.2 8.0 8.1 12.3 12.4

Fig. 12 Experimental conditions with linear array.

Fig. 13 DOA estimations by (21) with four sources.

uik(l) =
M∑
j=1

L−1∑
τ=0

wi j(τ)h jk(l − τ). (39)

Then, the SIR of output i is calculated as

SIRi = 10 log10
〈|∑l uii(l)si(t − l)|2〉t

〈|∑k�i
∑

l uik(l)sk(t − l)|2〉t (dB), (40)

where 〈·〉t denotes the averaging operator over time t.

10.1 Linear Array

We performed experiments to separate speech signals in an
environment whose conditions are summarized in Fig. 12.
Our experiments involved two, three and four sources whose
locations are indicated in Table 1. The sensors were ar-
ranged linearly, and the number of sensors used was the
same as the number of sources. We used filters of length
L = 2048 because this length provided the best performance
under the conditions. The BSS program was coded in Mat-
lab and run on Athlon XP 3200+.

Fig. 14 Comparison of different methods for solving permutation
problem.

The results shown in Table 1 are the average SIRs of
output for eight combinations of 7-second speeches. We can
see that the spectral smoothing discussed in Sect. 9 improves
the average SIR for every setup. The short execution time,
as shown in Table 1, enables the BSS system to perform in
real time if the number of source signals is not very large.

Figure 13 shows DOA estimations for mixtures of four
sources obtained with (21). Figure 14 shows SIRs for three
and four sources with the different methods for solving the
permutation problem discussed in Sect. 7. Here, “Localiza-
tion” is the localization (DOA) approach (25) alone, “Corre-
lation” is the correlation approach (26) alone, “Integrated”
is the integrated method, and “Optimal” is the optimal so-
lution obtained by utilizing the si(t) and h ji(l) information.
The performance of “Localization” was stable but insuffi-
cient. The performance of “Correlation” was unstable and
very poor in the four-source cases. The “Integrated” method
performed very well and was close to “Optimal.”

10.2 Planar Array

Next, we carried out experiments on separating six sources
with a planar array of eight microphones. The room lay-
out and other experimental conditions are shown in Fig. 15.
All six sources were 6-second speech signals, and two came
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Fig. 15 Experimental conditions for planar array case.

Fig. 16 Histogram of DOAs estimated with small spacing microphone
pairs.

from the same direction. The filter length was again L =
2048 for an 8-kHz sampling rate.

Let us explain the method for solving the permutation
problem in this situation. First, the source directions were
estimated with small-spacing microphone pairs (1-3, 2-4, 1-
2 and 2-3 shown in the right-top corner of Fig. 15). This was
performed based on (20), (22) and (23). Figure 16 shows a
histogram of the estimated DOAs. There are five clusters in
this histogram, and one cluster is twice the size of the others.
This implies that two sources came from the same direction
(about 150◦). We solved the permutation problem for the
other four sources by using this DOA information as shown
on the upper plot of Fig. 17.

Then, to distinguish between the two sources that came
from the same direction, the spheres of these sources were
estimated with large-spacing microphone pairs (7-5, 7-8, 6-
5 and 6-8 shown in the center of Fig. 15). This was per-
formed based on (19). The lower plot of Fig. 17 shows the
radiuses of the spheres estimated with microphone pair 7-
5. Although the radius estimations had large variances, it
provided sufficient information to distinguish between the
two sources. Consequently, the signal components of all
frequencies were classified into six clusters. We decided the
permutation only for frequency bins where the classification
was reliable, as discussed in Sect. 7.3.

Fig. 17 Permutation solved by using estimated DOAs (upper) and
spheres (lower).

To show the effectiveness of this method, we compared
SIRs by three different methods for the permutation prob-
lem. Table 2 shows the results. The last row, “DOA +
Sphere + Correlation,” shows the results obtained with the
integrated method. The two methods for comparison were
“Correlation” where only the correlations (26) were maxi-
mized, and “DOA + Correlation” where only the DOA infor-
mation was used for the source localization step in the inte-
grated method. To see how much the SIRs were improved,
we also measured the SIR of the mixture observed at mi-
crophone 1 (“SIR at microphone 1”). The effectiveness of
the two integrated methods can again be observed. If we
compare the results of “DOA + Correlation” with “DOA +
Sphere + Correlation,” the improvement of the latter over
the former is apparent for sources 4 and 5, which came from
the same direction. This means that the sphere information
was important in terms of distinguishing between sources
coming from the same direction. The BSS program was
again coded in Matlab and run on Athlon XP 3200+. The
computational time for separating six speeches of 6 seconds
was around one minute.

10.3 Moving Sources

In most realistic applications, the source location may
change. A mixing system is time-varying when source sig-
nals move. A naive approach for tracking a time-varying
system is an online algorithm that updates the separation
system sample by sample [48], [49].
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Table 2 Separation performance with planar array measured by SIR (dB).

SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 average
SIR at microphone 1 -8.3 -6.8 -7.8 -7.7 -6.7 -5.2 -7.1
Correlation 4.4 2.6 4.0 9.2 3.6 -2.0 3.7
DOA + Correlation 9.6 9.3 14.7 2.7 6.5 14.0 9.4
DOA + Sphere + Correlation 10.8 10.4 14.5 7.0 11.0 12.2 11.0

Fig. 18 Average and standard deviation of SIR for fixed sources.

Fig. 19 Layout of room used in experiments. TR = 130 ms.

Indeed, an online algorithm can track a time-varying
system; however, its performance is generally worse than
a batch algorithm, which can employ a number of samples,
when the system is stationary. Although we are dealing with
moving sources, we do not want to degrade the performance
for fixed sources.

In this section, we describe a real-time BSS method
[50] that employs frequency domain ICA with a blockwise
batch algorithm. This algorithm achieves better separation
performance than an online algorithm for fixed source sig-
nals.

We measured the BSS performance using ICA. Fig-
ure 18 shows the average and standard deviation of SIR for
fixed sources (the target is at A and the interference at C in
Fig. 19). This indicates that the blockwise batch algorithm
outperforms the online algorithm (in which µ is tuned to op-
timize the performance) when we use the update Eq. (12).
In addition, the deviation of the batch algorithm is smaller
than that of the online algorithm, which is why we adopt the
blockwise batch algorithm. We used block size Tb = 1.0 s in

Table 3 Experimental conditions.

Common Sampling rate = 8 kHz
Window = hanning
Reverberation time TR=130 ms

ICA part Frame length TICA = 1024 points (128 ms)
Frame shift = 256 points (32 ms)
g = 100.0
µ = optimized for block size Tb

Number of iterations NI = 100

Fig. 20 SIR of blockwise batch algorithm without postprocessing. Tar-
get and interference signals moved at 10 s (Tb = 1.0 s).

the experiments.
We carried out experiments using speech signals

recorded in a room. The reverberation time of the room was
130 ms. We used two omni-directional microphones with
an inter-element spacing of 4 cm. The layout of the room is
shown in Fig. 19. The target source signal was first located
at A and then moved to B at a speed of 30 deg/s. The inter-
ference signal was located at C and moved to D at a speed
of 40 deg/s.

The step size parameter µ in (12) affects the separation
performance of BSS when the block size changes. We car-
ried out preliminary experiments and chose µ to optimize the
performance for each block size. The other conditions are
summarized in Table 3. We measured SIRs with 30 combi-
nations of source signals using three male and three female
speakers, and averaged them.

We investigate the BSS performance for moving
sources using the blockwise batch algorithm. Figure 20
shows the SIR for a moving target (solid line) and that for a
moving interference (dotted line). We can see that the SIR
is not degraded even when the target moves. By contrast,
interference movement causes a decline in the SIR.

This can be explained by the directivity pattern of
the separation system obtained by ICA. The solution of
frequency-domain BSS works in the same way as an adap-
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tive beamformer, which forms a spatial null toward an inter-
ference signal (Fig. 5). Because of this characteristic, BSS
using ICA is robust with a moving target signal but fragile
with a moving interference signal. Taking advantage of this
nature, we can estimate residual crosstalk components even
when the interference signal moves by employing postpro-
cessing in the second stage [50].

11. Conclusion

This paper presented a comprehensive description of
frequency-domain BSS as well as various techniques that
enable frequency-domain BSS to be used for separating
many speech signals mixed in a real-room environment. The
permutation problem has been a major concern with the fre-
quency domain approach. However, with the methods de-
scribed in Sect. 7, this problem can be solved even in a prac-
tical situation. Moreover, the locations of sources can be
estimated by the method described in Sect. 6. This abil-
ity is unique to the frequency domain approach, and can-
not be seen in time-domain BSS. Our experimental results
show that the separation performance was fairly good and
the computational cost was feasible. These results demon-
strate the effectiveness of frequency-domain BSS.
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