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Abstract

In this paper, we propose a novel source separation method for the hose-shaped rescue robot
based on multichannel nonnegative matrix factorization (MNMF) and statistical speech enhance-
ment. The rescue robot is aimed to detect victims’ speech in a disaster area, wearing multiple
microphones around the body. Different from the common microphone array, the positions of
microphones are unknown, and the conventional beamformer cannot be utilized. In addition, the
vibration noise (ego-noise) is generated when the robot moves, yielding the serious contamina-
tion in the observed signals. Therefore, it is important to eliminate the ego-noise in this system.
Blind source separation is a technique taken to separately estimate the sources without knowing
the sensors’ positions. Several methods, e.g., independent component analysis, independent
vector analysis, and spatially rank-1 MNMF (Rank-1 MNMF) have been proposed so far, but their
separation performance is not sufficient. To address this problem, in this study, first, supervised
Rank-1 MNMF is proposed, thanks to the stationary properties of the ego-noise, where we train
spectral bases of the ego-noise in advance. Secondly, to reduce the mismatch problem between
the trained bases and the spectrogram in observed data, we propose an algorithm that an all-pole
model is estimated to deform the bases using the reliable spectral components sampled by the
statistical signal enhancement method. Thirdly, we propose to initialize Rank-1 MNMF by using
the low-rank representation of the estimated speech spectrogram, and improve the convergence.
Finally, we reveal that the proposed method outperforms the conventional methods in the source
separation accuracy via experiments with actual sounds observed in the rescue robot.
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1 Introduction
In this paper, we propose a novel source separation method for the hose-shaped rescue robot
based on multichannel nonnegative matrix factorization (MNMF) [1, 2] and statistical speech
enhancement. The rescue robot is aimed to detect victims’ speech in a disaster area, wearing
multiple microphones around the body (see Fig. 1). Different from the common microphone
array, the positions of microphones are unknown, and the conventional beamformer cannot be
utilized. In addition, the vibration noise (ego-noise) is generated when the robot moves, yielding
the serious contamination in the observed signals. Therefore, it is important to eliminate the
ego-noise in this system.

Blind source separation is a technique taken to separately estimate the sources without know-
ing the sensors’ positions. Several methods, e.g., independent component analysis (ICA) [3, 4,
5, 6], independent vector analysis (IVA) [7, 8], and spatially rank-1 MNMF (Rank-1 MNMF) [9,
10, 11] have been proposed so far (see Fig. 2 for their advantages and drawbacks). However,
their separation performance is not sufficient, especially for the purpose of actual acoustic
sound separation. To address this problem, in this study, first, supervised Rank-1 MNMF is
proposed, thanks to the stationary properties of the ego-noise, where we train spectral bases
of the ego-noise in advance.

Secondly, to reduce the mismatch problem between the trained bases and the spectrogram
in observed data, we propose an algorithm that an all-pole model is estimated to deform the
bases using the reliable spectral components sampled by the statistical signal enhancement
method. Also, we propose to initialize Rank-1 MNMF by using the low-rank representation of
the estimated speech spectrogram, and improve the convergence.

Finally, we reveal that the proposed method outperforms the conventional methods in the
source separation accuracy via experiments with actual sounds observed in the rescue robot.

2 Preliminaries and related Works
2.1 Sound mixing model

The number of sources and that of microphones are assumed to be M. We represent multi-
channel sound source signals, observed signals, separated signals in each time-frequency slot
as follows:

sssω,t = [sω,t,1,sω,t,2, · · · ,sω,t,M]T, (1)

xxxω,t = [xω,t,1,xω,t,2, · · · ,xω,t,M]T, (2)

yyyω,t = [yω,t,1,yω,t,2, · · · ,yω,t,M]T, (3)
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Figure 1: (a) Overview of hose-shaped rescue robot, and (b) its location of microphones.

Figure 2: Relationship between typical source separation algorithms.

where 1 ≤ ω ≤ Ω and 1 ≤ t ≤ T denote the frequency and time indexes. Here we can express
the observed signal as

xxxω,t = AAAωsssω,t , (4)

where AAAω is called the mixing matrix.
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2.2 Blind source separation

If we know the mixing matrix and its inverse, the separated signal is given by

yyyω,t =WWW ωxxxω,t , (5)

where WWW ω = AAA−1
ω is referred to as the demixing matrix.

To blindly estimate the demixing matrix only from the observed signal, several methods have
been proposed so far, e.g., ICA, IVA, and Rank-1 MNMF. In this study, we introduce Rank-
1 MNMF, which models each sound source spectrogram as low-rank nonnegative matrix and
decomposes the sources on the basis of their independence nature. Thus, this method can
also be referred to as independent low-rank matrix analysis. For more detail algorithm, see
[11].

2.3 Informed source separation

In the application of robot audition, we can often obtain the prototype of the ego-noise signal
that can be used as training data in advance. This property is very suitable for embedding the
supervision spectral bases into Rank-1 MNMF, yielding the rapid convergence of the algorithm.
A priori ego-noise basis training is carried out via NMF, expressed as

SSSnoise ' FFFGGG, (6)

where SSSnoise is a nonnegative matrix that represents an amplitude spectrogram of the specific
signal used for training, FFF is a nonnegative matrix that comprises the basis vectors of the
ego-noise signal as column vectors, and GGG is a nonnegative matrix that corresponds to the
activation of each basis vector of FFF . Therefore, the basis matrix FFF is constructed by the su-
pervision of the ego-noise signal, and embedded into Rank-1 MNMF as a part of ego-noise
source model.

3 Proposed method
3.1 Overview of proposed method

One inherent problem of informed source separation is a mismatch between the trained basis
FFF and real-world ego-noise confronted with the robot. Thus, it is necessary to adapt the super-
vised basis to the real ego-noise signal spectrogram to deal with real environmental sounds.
However, it is difficult for Rank-1 MNMF to perform optimal basis deformation because it opti-
mizes the deformation and separation simultaneously. In this paper, we propose a new method
introducing the following schemes. (a) Apart from the source separation process, the basis
deformation process is separately carried out with a linear time-invariant filter, namely an all-
pole model, that consists of fewer parameters. (b) The parameters of the all-pole model can
be optimized by utilizing “sampled convincing target components" obtained by a generalized
minimum mean-square error short-time spectral amplitude (MMSE-STSA) estimator [12].

First, we perform Rank-1 MNMF with a current supervised basis FFF . Second, using the gener-
alized MMSE-STSA estimator with an estimated extra components of ego-noise signal, YYY mix−
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FFFGGG, we obtain an estimated ego-noise signal YYY and a binary mask III that extracts seldom
overlapping components with the target speech signal from the estimated ego-noise signal YYY .
Finally, we deform the original supervised basis FFForg and update FFF as a deformed basis. After
some iterations of the procedures, we conduct Rank-1 MNMF using the deformed basis and
obtain the improved separation.

3.2 Convincing component sampler using statistical spectral amplitude estimator

The generalized MMSE-STSA estimator calculates the spectrum gain JJJ that minimizes the
average squared error between the true ego-noise signal and the estimated signal given the a
priori probability distribution of the ego-noise signal. This process is expressed as follows:

YYY = JJJ ◦YYY mix, (7)

Jω,t =

√vω,t

γ̃ω,t
·
(

Γ(ρ +0.5)
Γ(ρ)

· Φ(0.5−ρ,1,−vω,t)

Φ(1−ρ,1,−vω,t)

)1/β

, (8)

where YYY is the ego-noise signal estimated by the generalized MMSE-STSA estimator, ◦ is a
Hadamard product, Jω,t is an element of JJJ, Γ(·) is the gamma function, Φ(a,b;k) = F1(a,b;k) is
the confluent hypergeometric function, β is the amplitude compression parameter, and ρ is the
shape parameter of the chi-squared distribution used as the prior distribution of the ego-noise
signal. In addition, vω,t is defined using an a priori SNR ε̃ω,t and a posteriori SNR γ̃ω,t as

vω,t = γ̃ω,t ε̃ω,t

(
1+ ε̃ω,t

)−1
. (9)

In the generalized MMSE-STSA estimator, it is necessary to obtain the power spectrum of the
nontarget signal to calculate γ̃ω,t . In this study, we use YYY mix−FFFGGG for this purpose. In addition,
we use the method proposed in [13] to estimate ρ.

3.3 Basis deformation with all-pole model using generalized MMSE-STSA estimator

In this section, we propose basis deformation with an all-pole model controlled by the gen-
eralized MMSE-STSA estimator. Note that the basic idea has been introduced to describe a
spectral mismatch in a music signal [14]. However, to the best of our knowledge, this method
is the first approach to apply the model to the basis deformation problem for robot ego-noise.

In our method, we calculate the trained supervision and deform the basis FFForg with reference
to the estimated ego-noise signal YYY . Since the estimated ego-noise signal YYY still has low ac-
curacy, it is necessary to extract only a sufficient number of reliable components to deform the
basis correctly. Otherwise, the basis deforms excessively and cannot accomplish the separa-
tion. Therefore, to avoid this, the thresholding of the spectrum gain JJJ used to extract seldom
overlapping components with the speech signal is introduced. In addition, although the few
components are sampled by the thresholding that yields many blanks in the spectrogram, they
are still sufficient to decide the all-pole model because the model has the time-invariant and
frequency-interpolation properties. The above-mentioned concepts are described as

III ◦YYY ' III ◦ (AAAFFForgGGG), (10)
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where III is an Ω×T binary mask matrix with entries iω,t , which was obtained from the spectrum
gain matrix JJJ of the generalized MMSE-STSA estimator, the entries of which were subjected
to thresholding (e.g., if Jω,t > 0.8, then iω,t = 1; otherwise iω,t = 0). In addition, AAA is a diagonal
matrix in which the diagonal elements are described using the all-pole model. The elements of
AAA are described as

Aω,ω =
1

|1−∑
p
k=1 αk exp(−π jk ω

Ω
)|
, (11)

where p is the order and αk are the coefficients of the all-pole model. In addition, we define
Aω = 1−∑

p
k=1 αk exp(−π jk ω

Ω
) to simplify the calculations.

3.4 Cost function and update rule

The cost function for (10) based on the generalized KL divergence is given by

J = ∑
ω,t

iω,t

{
−yω,t +

∑k fω,kgk,t

|Aω |
+ yω,t log

yω,t

∑k fω,kgk,t/|Aω |

}
, (12)

where yω,t , fω,k, and gk,t are the nonnegative elements of matrices YYY , FFForg, and GGG, respectively.
Since it is difficult to analytically derive the optimal AAA and GGG, we define an auxiliary function
that represents the upper bound of J , as described below. First, applying Jensen’s inequality
to log∑k fω,kgk,t and the tangent inequality to log |Aω |= 1/2log |Aω |2, we have

J ≤∑
ω,t

iω,t

{
∑k fω,kgk,t

|Aω |
+ yω,t(

1
2ρω

|Aω |2−∑
k

ζω,t,k log
fω,kgk,t

ζω,t,k
)+Cω,t

}
, (13)

where Cω,t are unnecessary constants when calculating the update rules of the activation
matrix GGG and the all-pole-model weight matrix AAA, and ρω and ζω,t,k are auxiliary variables.
The equality in (13) holds if and only if the auxiliary variables are set to ρω = |Aω |2 and
ζω,t,k = fω,kgk,t/∑k fω,kgk,t . Second, to make the auxiliary function a quadratic form of |Aω |,
we conduct a Taylor expansion around τω ,

J ≤∑
ω,t

iω,t

{
∑
k

fω,kgk,t(
1

τ3
ω

|Aω |2−3
1

τ2
ω

|Aω |+
3

τω

)+

yω,t(
1

2ρω

|Aω |2−∑
k

ζω,t,k log
fω,kgk,t

ζω,t,k
)+Cω,t

}
. (14)

The equality of (14) holds if and only if τω = |Aω |. This approximation does not meet the
condition of an auxiliary function, but if τω is updated as |Aω |, this approximation is equivalent
to Newton’s method. Finally, using the inequality Re[θ ∗ωAω ] ≤ |Aω |, we can define the upper
bound function J + for J as

J ≤∑
ω,t

iω,t

{
∑
k

fω,kgk,t(
1

τ3
ω

|Aω |2−3
1

τ2
ω

Re[θ ∗ωAω ]+
3

τω

)

+ yω,t(
1

2ρω

|Aω |2−∑
k

ζω,t,k log
fω,kgk,t

ζω,t,k
)+Cω,t

}
, (15)

where Re[·] is a real part of · and |θω |= 1. The equality of (15) holds if and only if θω =Aω/|Aω |.
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3.4.1 Multiplicative update rule for activation matrix GGG

The update rule for J + with respect to the activation matrix GGG is determined by setting the
gradient to zero. From ∂J +/∂gk,t = 0, we obtain

∑
ω

iω,t

{
fω,k(

1
τ3

ω

|Aω |2−3
1

τ2
ω

Re[θ ∗ωAω ]+
3

τω

)+ yω,t(−ζω,t,kg−1
k,t )
}
= 0. (16)

By substituting the auxiliary variables into (16) and simplifying it, we obtain the multiplicative
update rule of gk,t as

gk,t ← gk,t
∑ω iω,tyω,t fω,k/(∑κ fω,κgκ,t)

∑ω iω,t fω,k/|Aω |
. (17)

3.4.2 Multiplicative update rule for all-pole-model weight matrix AAA

First, by differentiating J + partially with respect to αq and setting it to zero, we obtain

p

∑
k=1

αk ∑
ω,t

[
iω,t(∑

k
fω,kgk,t

1
τ3

ω

+ yω,t
1

2ρω

)
(

exp
(
−π j

ω

Ω
(k−q)

)
+exp

(
π j

ω

Ω
(k−q)

))]

−∑
ω,t

iω,t

[
(∑

k
fω,kgk,t

1
τ3

ω

+ yω,t
1

2ρω

)
(
exp(−π j

ω

Ω
q)+ exp(π j

ω

Ω
q)
)
− 3

τ2
ω

∑
k

fω,kgk,tRe[θ ∗ω exp(−π j
ω

Ω
q))]

]
= 0, (18)

where 1≤ q≤ p. Second, we define RRR and rrr as

Rk,q =∑
ω,t

[
iω,t(∑

k
fω,kgk,t

1
τ3

ω

+ yω,t
1

2ρω

)
(

exp
(
−π j

ω

Ω
(k−q)

)
+exp

(
π j

ω

Ω
(k−q)

))]
, (19)

rq =∑
ω,t

iω,t

[
(∑

k
fω,kgk,t

1
τ3

ω

+ yω,t
1

2ρω

)
(
exp(−π j

ω

Ω
q)+ exp(π j

ω

Ω
q)
)

− 3
τ2

ω

∑
k

fω,kgk,tRe[θ ∗ω exp(−2π j
ω

Ω
q))]

]
. (20)

By substituting (19) and (20) into (18), we obtain

RRRααα = rrr, (21)

where ααα is the vector of coefficients in the all-pole model. Since RRR is a Toeplitz matrix, we can
derive ααα using the Levinson–Durbin algorithm with a computationally efficient form.

3.5 Initialization of speech basis

In the previous subsections, we described the detail strategy of the deformation with regard to
the ego-noise basis. In our method, we also propose to initialize Rank-1 MNMF by using the
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low-rank representation of the estimated speech spectrogram, and improve the convergence.
This can be accomplished by using the same methodology as the ego-noise enhancement,
i.e., the generalized MMSE STSA estimator is applied to the speech signal candidate (not the
ego-noise candidate) separated by Rank-1 MNMF, and we obtain more sparse representation.
Then, we again set the sparse-aware speech basis into Rank-1 MNMF and restart the update
of the demixing matrix.

4 Experimental evaluation
4.1 Experimental condition

To validate the efficacy of the proposed method, we conducted an experimental simulation
based on the real apparatus with the hose-shaped robot shown in Fig. 1. The experimental
conditions were set as follows.

The flexible robot had eight location-unknown microphones, which recorded an observed sig-
nals consisting of one speech signal and ego-noise. The target signal was imitated using clean
male and female speech signals with real-recorded impulse responses from the source to each
of the microphones. The multichannel ego-noise signals were independently recorded with the
actual dynamics of the robot, and were added into the speech signals. The ego-noise signals
were classified into two parts, i.e., (a) matched: this ego-noise signal was used for both initial
basis training and separation test (for 2 patterns), and (b) mismatched: different ego-noise
signals were independently used for basis training and separation test (for 3 patterns).

4.2 Results

The evaluation score of the separation performance is a signal-to-distortion ratio (SDR) via
BSSeval [15], which indicates the total sound quality regarding separation accuracy and sound
distortion. In this evaluation, we set the input SDRs of 0, -5, and -10 dB. As for the competitive
methods, IVA [8], supervised NMF (SNMF) [16], simple Rank-1 MNMF are used.

Figure 3 shows the SDR scores for each of the methods, which are averaged over all ex-
perimental conditions. We can confirm that the proposed methods of both matched and mis-
matched cases outperform other conventional methods. The matched case is the best one
because the same ego-noise signal can be used for basis training and separation, i.e., this
corresponds to perfectly informed situation (but unrealistic). The mismatched case is more fea-
sible situation and still gains certain SDR improvement, showing the proposed method’s net
efficacy.

5 Conclusions
In this paper, we proposed a new informed source separation method for the flexible micro-
phone array system equipped in the hose-shaped rescue robot based on supervised Rank-1
MNMF and statistical speech enhancement. To reduce the mismatch problem between the

8



Figure 3: SDR scores for each method, which are averaged with respect to each experi-
mental condition.

trained bases and the spectrogram in observed data, we proposed the algorithm that an all-
pole model is estimated to deform the bases using the reliable spectral components sampled
by the statistical signal enhancement method. We revealed that the proposed method outper-
forms the conventional methods via experiments with actual sounds in the rescue robot.
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