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Abstract—Conventional noise suppression methods based on
array signal processing use phase information and control the
directivity of noises. However, such methods can hardly suppress
so-called background noise, whose arrival direction cannot be
specified. Thus, multiple far noise suppression based on transfer-
function-gain non-negative matrix factorization (NMF) has been
proposed as a method that can suppress such background
noise. Its effectiveness has been confirmed by an experimental
simulation using convolutional mixtures; however, it has not been
verified that it is practical in a real environment. Thus, in this
paper, we examine the performance of this method by recording
a target and multiple far noises with asynchronous microphones
in a real environment. We confirm that this method can suppress
far noises in a real environment with diverse distances between
microphones and interference sources.

I. INTRODUCTION

Many noise suppression methods based on array signal pro-
cessing have been proposed to improve the quality of recorded
speech [1]–[4]. They suppress noises by using phase informa-
tion and controlling the directivity of noises. However, such
methods have the following issues. First, their performance is
degraded if they are employed for asynchronous recording.
Asynchronous recording has recently attracted considerable
interest because it is possible to easily and flexibly con-
struct a multichannel microphone array using familiar portable
recording devices such as mobile phones and voice recorders.
However, in asynchronous recording, drifts are caused by dif-
ferences in the recording start time or the sampling frequency
mismatch among the channels. The drifts change the time
difference of arrival of each source over time and degrade
the performance of array signal processing based on phase
analysis [5], [6]. Next, they can hardly suppress so-called
background noise, whose arrival direction cannot be specified.
These methods also use a number of sound sources and the
arrival directions of noises. Therefore, they cannot suppress the
background noises if their arrival directions and the number
of sources are unknown.

Recently, a new method of noise suppression has been
proposed [7] that solves the above issues. In this method, phase
information is not necessary because array signal processing
is employed in the amplitude domain. Also, by assuming that
the background noises arrive from far away, such noises are
modeled by a single basis. In other words, it is assumed that
the observed signal is composed of two sources, a target source
and a mixed noise source. Then transfer-function-gain non-
negative matrix factorization (NMF) is employed with this
mixing model. Note that the amplitude-spectrum beamformer
[8] is also a method of noise suppression in the amplitude do-
main. Although the amplitude-spectrum beamformer requires
advance learning for all voices contained in an observed signal
using each single sound source, transfer-function-gain NMF
does not require such learning. Therefore, this method is
expected to be more suitable for background noises than the
amplitude-spectrum beamformer.

The effectiveness of noise suppression based on transfer-
function-gain NMF has been confirmed by a computer sim-
ulation using convolutional mixtures [7]; however, it has not
been verified that it is practical in a real environment. Thus,
in this paper, we verify the effectiveness of this method in a
real environment by recording multiple noises asynchronously
and employing this method of noise suppression. Although
the computer simulation [7] realized asynchronization by
artifically generating a sampling frequency mismatch, we
recorded voices with separate IC recorders to naturally realize
a sampling frequency mismatch. Our experiment evaluated the
practical performance of the proposed method.

II. OBSERVED SIGNAL MODEL OF FAR NOISE

A. Amptitude-based mixing model
In this section, we describe the signal modeling of asyn-

chronous observed signals. Before describing asynchronous
observation, we begin with the synchronous observation of
a target source and K noise sources by M microphones.
The difference between synchronization and asynchronization
is whether or not phase drifts are caused. In asynchronous
recording, phase drifts are caused among the observed signals
by the difference in the recording start time or the sampling
frequency mismatch among the recording devices.

Then, the observed signals in the time-frequency domain
can be expressed by (1) as the sum of the target signal XS(ω)
and the noise signal XI(ω).

X(ω) = XS(ω) +XI(ω) (1)

X(ω),XS(ω) and XI(ω) are matrices of size M × N and
have the complex values Xmn(ω), X

S
mn(ω) and XI

mn(ω),
respectively, for their (m,n) elements. ω and N represent the
frequency index and the number of time frames, respectively.
We indicate the components of the target signal and the noise
signals with the superscripts S (signal) and I (interference),
respectively. Then, XS(ω) and XI(ω) are expressed by

XS(ω) = aS(ω)sS(ω), (2)

XI(ω) =
K∑

k=1

aIk(ω)sIk(ω), (3)

where aS(ω) and aIk(ω) are M × 1 vectors and the elements
aSm(ω) and aIkm(ω) describe the transfer function from the
target source or noise source k to microphone m, respectively.
sS(ω) and sIk(ω) are 1×N vectors and the elements sSn(ω)
and sIkn (ω) describe the time-frequency components of the
target source or noise source k in time frame n, respectively.
The above model is valid for a synchronous microphone array
but invalid for an asynchronous microphone array, because
am(ω) is affected by phase drifts and can be time-varying.
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Fig. 1. Time-channel domain representation of observed signals for each
frequency bin.

Although an asynchronous recording has phase drifts, we
can assume that the amplitudes of the transfer function are
time-invariant if the phase drifts are sufficiently less than the
short-time Fourier transform (STFT) frame width. Therefore,
assuming the additivity of the amplitudes in the frequency
domain, the mixing model can be expressed by the product
sum of the amplitude spectrum omitting the phase as follows:

|X(ω)| ≈
∣∣XS(ω)

∣∣+ ∣∣XI(ω)
∣∣ . (4)

Such a mixing model in the power or amplitude domain is
frequently assumed when NMF is employed [9]. Moreover,
the target source

∣∣XS(ω)
∣∣ and the noise sources

∣∣XI(ω)
∣∣ in

the amplitude spectrum are expressed by∣∣XS(ω)
∣∣ = ∣∣aS(ω)

∣∣ ∣∣sS(ω)∣∣ . (5)∣∣XI(ω)
∣∣ ≈ K∑

k=1

∣∣aIk(ω)
∣∣ ∣∣sIk(ω)∣∣. (6)

∣∣aS(ω)
∣∣ and

∣∣aIk(ω)
∣∣ are the transfer function gains of the

target and the noise source, respectively.
∣∣sS(ω)∣∣ and

∣∣sIk(ω)∣∣
are the absolute values of the amplitude of the target and the
noise source, respectively. As described above, we introduce
the mixing model in the amplitude domain. ã(ω) and s̃(ω) are
estimated from |X(ω)| by employing transfer-function-gain
NMF [10] in the time-channel domain as shown in Fig. 1.
Note that such a mixing model in the power or amplitude
domain has been frequently assumed in the NMF context. It
is only valid to apply transfer-function-gain NMF to the model
when the numbers of targets and noises are known. However,
the number of noise sources is assumed to be unknown and
thus we cannot suppress the noises. Therefore, in the next
section we describe the mixing model [7] used to suppress
such background noises.

B. Mixing model of far noise for suppressing background
noises

In this section, we describe the mixing model [7] used to
suppress the background noises. It is based on the idea that
the background noises are composed of multiple far noise
sources. Here, we assume that K background noises arrive
from much farther than the target and are scattered. In this
case, the average energies of the observed noise sources are
typically similar in a diffuse noise field [11]. Therefore, we
assume that the transfer function gains of all the noise sources
are similar if they are far away, and the transfer function gain
vectors of the noise sources can be expressed by a common
vector. Thus, the observed signal

∣∣∣X̂I
∣∣∣, the transfer function

gain
∣∣âI

∣∣ and the absolute value of the amplitude
∣∣ŝI∣∣ of such

far noises can be expressed as∣∣∣X̂I(ω)
∣∣∣ ≈ ∣∣âI(ω)

∣∣ ∣∣ŝI(ω)∣∣ , (7)∣∣âI(ω)
∣∣ ≈ ∣∣aI1(ω)

∣∣ ≈ · · · ≈ ∣∣aIK (ω)
∣∣ , (8)∣∣ŝI(ω)∣∣ ≈ K∑

k=1

∣∣sIk(ω)∣∣. (9)

According to the equations above, the observed signal
model in the amplitude domain composed of a target and
background far noises can be expressed by

|X(ω)| ≈ |A(ω)| |S(ω)| , (10)

|A(ω)| ≈
[∣∣aS(ω)

∣∣ ∣∣âI(ω)
∣∣] , (11)

|S(ω)| ≈
[ ∣∣sS(ω)∣∣∣∣ŝI(ω)∣∣

]
. (12)

We conduct background noise suppression on the basis of the
above observation. In particular, we assume that the value
of

∣∣aS1 (ω)∣∣ is the highest among
∣∣aSj (ω)∣∣ (j = 1, · · · ,M)

by placing microphone 1 of the microphone array closest
to the target source, utilizing the flexibility of asynchronous
recording. This assumption is necessary because this method
distinguishes between the target and the noise by considering
the difference in the transfer-function gain among the channels.
In the following, all the modeling and processing can be
carried out in each frequency bin. Therefore, we omit ω for
simplicity.

III. FAR NOISE SUPPRESSION WITH NMF
A. Noise suppression using transfer-function-gain NMF

In this section, we describe noise suppression using the
above observed signal model. This noise suppression employs
transfer-function-gain NMF in the time-channel domain to
estimate the parameters of the model. In this method, the
typical decomposition of NMF in audio and acoustic signal
processing [12]–[14], such as decomposition into spectral
patterns and activations, is not used. The parameterization of
the NMF is shown in Fig. 1.

NMF approximates a non-negative matrix as two low-rank
non-negative matrices as follows [9]:

|X| ≈ X̃ = ÃS̃. (13)

The tilde represents the matrices or elements estimated by
NMF. In such a low-rank approximation, the solutions will
be sparse owing to the non-negative constraint. Therefore, the
transfer function gain Ã and the source activation S̃ are iden-
tified along with the estimation of the source amplitudes |A|
and |S|. Furthermore, NMF minimizes the distance between
|X| and ÃS̃. In this method, I-divergence is employed as
the distance regulation. Each parameter is estimated using the
following multiplicative update rules:

ãim ← ãim

∑
n

|Xmn| s̃in
ãSms̃Sm + ãIms̃Im∑

n s̃
i
n

(i = S, I), (14)

s̃im ← s̃im

∑
n

|Xmn| ãin
ãSms̃Sm + ãIms̃Im∑

n ã
i
n

(i = S, I). (15)
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Moreover, the initial values of ãS are set as (16)

ãSm =

{
1− (1−M)α (m = 1)
α (otherwise)

, (16)

where α is an arbitrary number that satisfies 0 < α < 1/(M−
1). This is because it is assumed that the value of

∣∣aS1 (ω)∣∣ is
the highest among

∣∣aSj (ω)∣∣ (j = 1, · · · ,M). Also the initial
values of ãI are given by

ãIm =
1

M
(m = 1, · · · ,M), (17)

Then, the enhanced signal Ỹn is obtained from the observed
signal of microphone 1 (X1n) and a Wiener mask as

Ỹn = X1n

(
ãS1 s̃

S
n

)2(
ãS1 s̃

S
n

)2
+
(
ãI1s̃

I
n

)2 . (18)

B. Semi-supervised transfer-function-gain NMF

If the numbers of microphones and sources are similar, high
performance cannot be expected for the parameter estimation
described in the previous section because the estimation accu-
racy of NMF is degraded. Some methods have been proposed
to solve this problem including semi-supervised transfer-
function-gain NMF [7]. In this method, semi-supervised NMF
in the time-frequency domain [15] is applied to transfer-
function-gain NMF. In particular, the transfer function gain
vector of the background noises ãI is obtained by training
using NMF. The training requires the observation of the single-
source duration of the background noises. After that, the
transfer function gain vector of the target ãS and the activation
vectors s̃S and s̃I are obtained by updating (14) and (15) with
ãI fixed.

Note that supervised transfer-function-gain NMF [16] is also
an effective method, which requires the training of ãS and
ãI. Although the performance of supervised NMF is higher
than that of semi-supervised NMF, it is difficult to obtain
the single-source durations of the target in a constantly noisy
environment. Therefore, semi-supervised NMF is employed in
this paper.

IV. EXPERIMENTAL EVALUATION

A. Experimental conditions

In this experiment, we confirm the effectiveness of the
mixing model and transfer-function-gain NMF in a real envi-
ronment. Table I shows the differences between the conditions
in the simulation [7] and this experiment. The other conditions
are almost equivalent to those in the simulation [7]. Figure 2
shows the arrangement of the target source, the interference
sources and the microphones, and Fig. 3 shows the microphone
arrangement. As shown in Fig. 2, the distances between the
microphones and the interference sources vary between 2
m and 3.5 m. The microphone placed closest to the target
source is microphone 1. The signal-to-distortion ratio (SDR)
and signal-to-interference ratio (SIR) [18] are used as the
evaluation scores. We calculated the evaluation scores of
the unprocessed observation (unproc) and of the observation
processed by the method employing semi-supervised transfer-
function-gain NMF with 3 channels, 6 channels and 9 channels
(3 ch, 6 ch, 9 ch) as shown in Fig. 3.

Table I
EXPERIMENTAL CONDITIONS

simulation [7] this experiment

observed
signals

convolutive mix-
ture of RIR [17]
and clean speech

speech recorded
with IC recorders

reverberation
time 0.3 s 0.64 s

background
noise except
interference

——–
35.3–

35.8 dB(A)

cause of
phase drift

sampling fre-
quency mismatch
among channels

by artificial
resampling

difference in re-
cording start times
and sampling fre-
quency mismatch

among IC
recorders

sampling fre-
quency

mismatch

within
3 Hz

within
0.1 Hz

1

2

3

4
5

6

7
8

target (loudspeaker)

interference (loudspeaker)

microphones

(IC recorders)

250cm

300cm

250cm200cm

350cm

300cm

350cm 200cm

Fig. 2. Arrangement of target, interference sources and microphones.

target (loudspeaker)

1

2

9

7

8

5

6

3

10

4

50cm

30cm
3ch: 1, 4, 8

6ch: 1, 2, 4, 6, 8, 10

9ch: all microphones

except 7

Fig. 3. Arrangement of microphones (IC recorders).

B. Experimental results

Figure 4 shows the experimental results. In transfer-
function-gain NMF employing the observed signal model, the
SDRs and SIRs are higher than those of the unprocessed
observation. From the results for unproc and 3 ch, we confirm
that this method can supress the noises by assuming that the
observed signal is composed of a target and a mixed noise and
that it can avoid underdetermination. Furthermore, according
to the results for 3 ch, 6 ch and 9 ch, we confirm that the
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Fig. 4. Experimental results.

greater the number of microphones used to suppress noises,
the greater the performance of noise suppression, similarly to
in the simulation [7].

The tendency of the results in this experiment and the
simulation is similar. However, the improvements in the SDR
and SIR in this experiment are less than those in the simulation
[7]. This is because the distance between the microphones and
the interference sources in this experiment is shorter than that
in the simulation. Also, according to Table I, the conditions,
such as the reverberation time, the background noise and
the sampling frequency mismatch, in this experiment are less
favorable than those of the simulation. Thus, we can conclude
that the background noises are effectively suppressed in a real
environment by the proposed method.

C. Estimation of Ã
We investigate the estimation of the transfer-function gain

Ã (ãS and ãI) to confirm the effectiveness of processing
multiple noises as a single basis. We employ the transfer-
function-gain NMF to a single sound comprising all sources
(1 target and 8 noises), assuming that we know the numbers
of sources and transfer-function gain bases we need. Note that
the sensitivity is almost equal among all the microphones, and
that the values do not express the true observation because
they are normalized in the range of each source. Figure 5
shows the observation of Ã with 3, 6 and 9 channels. The
transfer-function gain of the target has a greater difference
among the channels than that of the noises, and all the transfer-
function gains of the noises are similar among the channels.
The entry “ch1” is the transfer-function gain of microphone 1,
which is placed closest to the target. Then “ch1” is by far the
highest transfer-function gain of the target, but regarding the
noises, an exceptionally high value is not found. Therefore,
we consider that the assumptions given by (10) – (12) clearly
hold. Furthermore, the dispersion of the transfer-function gain
of the noises is different between “Estimation by 3 channels”
and “Estimation by (6 or 9) channels” in Fig. 5. This is because
the minimum distance between the IC recorders is different (3
channels: 52[cm], 6 and 9 channels: 30[cm]). It is clear that
the longer the distances among the microphones, the longer
the distances necessary between the microphone array and the
noise source.
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Fig. 5. Estimated transfer function gains (the components of Ã(ãS, ãI)) in
3ch, 6ch and 9ch case from top to bottom.

V. CONCLUSION

In this paper, we examined the performance of multiple far
noise suppression using transfer-function-gain NMF by record-
ing a target and far noises with asynchronous microphones in a
real environment. We confirmed that this method can suppress
background far noises effectively in a real environment, re-
gardless of the diversity of distances between the microphones
and interference sources.
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