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Abstract—We have proposed a new algorithm for sparseness-
based underdetermined blind source separation (BSS) that can
cope with diffused noise environments. This algorithm includes
a technique for estimating the time-difference-of-arrival (TDOA)
parameter separately in individual frequency bins for each
source. In this paper, we propose methods that integrate the
frequency-bin-wise TDOA parameter to estimate the TDOA of
each source. The accuracy of TDOA estimation with the proposed
approach is shown experimentally in comparison with a con-
ventional approach. The separation performance and calculation
time of the proposed approach is also examined.

I. INTRODUCTION

Blind Source Separation (BSS) has been intensively inves-
tigated because the problem setting matches the real envi-
ronment very well. With overdetermined BSS cases, source
separation can be performed satisfactorily, especially in a clean
environment, for example by using Independent Component
Analysis (ICA). To be able to handle a more realistic situation,
however, we must consider the underdetermined case, where
there are fewer sensors than sources.

Many methods have been proposed for underdetermined
BSS [1], [2], [3], [4], [5]. They employ the sparseness char-
acteristics of the source signals as a clue for BSS, and are
based on the clustering of the source location information,
such as time differences of arrival (TDOAs). However, most
such methods tend to be weak in the presence of reverberation
and background noise.

Recently, Izumi et al. [6] proposed a BSS method that
can overcome this problem. The method assumes a diffuse
noise environment to make the estimation robust, and solves
the TDOA clustering based on the Expectation-Maximization
(EM) algorithm. However drawback with this method is that
it cannot analytically update the TDOA parameters. As a con-
sequence, this method requires a time-consuming exhaustive
search for the TDOA update.

We have proposed a new efficient BSS algorithm to remove
the need for such an exhaustive search [7] within the same
robust BSS framework proposed in [6]. The new update rule
has eliminated the need for the exhaustive search of TDOA,
and reduced the computational load. The new update rule
provides the TDOA estimation results for each frequency bin.

Such frequency-wise TDOA estimation is sufficient for
BSS, however, it is insufficient for TDOA estimation of each
source. In concrete terms, we have to determine one common
TDOA for each source from the frequency-bin-wise TDOA
estimated in individual frequency bins for the source.

So in this paper, we propose methods for estimating the
TDOA of source signals from the estimated TDOA parame-
ters at each frequency bin. We provide experimental results
showing the accuracy of TDOA estimation with the proposed
methods in comparison with that of the conventional method.
We also report experimental results for the separation per-
formance and calculation time of the proposed methods in
comparison with those of the conventional method.

II. CONVENTIONAL METHOD

This section outlines the method proposed by Izumi et al.
[6] and the problem with it. Let xf,t = [xf,t,L, xf,t,R]

T be
signals observed by two microphones represented in the time-
frequency domain. Where f , t are the index of the time-
frequency slots. If we assume that source signals are suffi-
ciently sparse such that only one source signal is active at each
time-frequency point, and each source signal is transferred as
a plane wave, xf,t can be written as

[
xf,t,L
xf,t,R

]
=

[
1

ej2πfδk

]
sf,t,k +

[
nf,t,L
nf,t,R

]
(1)

xf,t = bf,ksf,t,k +Nf,t (2)

, where k is the index of the source, sf,t,k is the complex
spectrum of the source signal that is active at a time-frequency
slot, bf,k is the transfer function from the source to the
microphones (δk is the TDOA between two microphones), and
nf,t is the observation error, which includes reverberation and
background noise and is assumed to be uncorrelated with the
source signals.

We assume that Nf,t is time-invariant and follows a Gaus-
sian distribution with a zero mean and a covariance matrix
σ2
fVf where σ2

f is the noise power, and V is given as follows
for the diffused noise



Vf =

[
1 sinc(2πfD/c)

sinc(2πfD/c) 1

]
(3)

. Here c is the velocity of sound, and D represents the distance
between the two microphones. The purpose of the conventional
method [6] and this paper is to estimate the source signals
sf,t,k solely from the mixed observation xf,t.

The likelihood function for the observation xf,t is

p(xf,t|k, θ) =
1

π2σ4
f |Vf |

exp

(
− 1

σ2
f

NH
f,t,kV

−1
f Nf,t,k

)
(4)

.
Let θ = {σ2

f , δk, sf,t,k} be the parameter set. The log
likelihood function is

L =
∑
t

∑
f

log
∑
k

p(xf,t|k, θ)p(k|θ) (5)

, where p(k|θ) is the mixing weight (
∑
k p(k|θ) = 1), and k is

an index of a source that is assumed to be dominant at a time
frequency point according to the sparseness characteristics
assumption.

In [6], this log likelihood is maximized with the EM algo-
rithm. The parameters to be estimated are θ = {σ2

f , δk, sf,t,k}
where k is the hidden variable and the auxiliary function in
this problem is

Q(θ|θ′) = E [log p(xf,t; θ)|θ′]
=

∑
t

∑
f

∑
k

mk,f,t log p(xf,t|k, θ)p(k|θ). (6)

. Here, time-frequency mask mk,f,t is the posterior probability
that source k is active at a time-frequency slot, and θ′ is the
parameter set obtained by the previous iteration.

Moreover, mk,f,t functions as a soft mask for separating the
k-th source in the EM algorithm, and after the convergence of
the EM algorithm we can estimate the separated source signal
yf,t,k as the expectation using the estimated parameters and
mf,t,k given by

yf,t,k = mf,t,k

bHf,kV
−1
f xf,t

bHf,kV
−1
f bf,k

(7)

.
In this paper, the E step updates mk,f,t and the auxiliary

function, and the M step updates the other parameters.
The time-frequency mask mk,f,t is updated by

mf,t,k = p(k|xf,t,k, θ′) =
p(k|θ′)p(xf,t|k, θ′)∑′
k p(k

′|θ′)p(xf,t|k′, θ′)
(8)

.
The parameters σ2

f and sf,t,k are estimated by differentiat-
ing the auxiliary function with respect to each parameter, and
setting them at zero,

σ2
f =

1

T

∑
t

∑
k

mf,t,kN
H
f,t,kV

−1
f Nf,t,k (9)

sf,t,k =
bHf,kV

−1
f xf,t

bHf,kV
−1
f bf,k

, (10)

and the mixing weight p(k|θ) (where
∑
k p(k|θ) = 1) is

calculated by

p(k|θ) = 1

TF

∑
t

∑
f

mf,t,k (11)

, where T and F are the numbers of time frames and frequency
bins, respectively.

In [6], as δk cannot be solved analytically, the update is
performed by calculating Q(θ|θ′) for all the discretized δk
and selecting δk that gives the maximum of Q

δk = argmaxδkQ(θ|θ′) (12)

.
This update rule has two problems. One is that we cannot

obtain an exact, optimal update of δk but only its discretized
approximation in each iteration. The other problem is that
this exhaustive search requires a large computational cost. To
overcome these problems, we derive an analytical update rule
for estimating the TDOA parameter δk.

III. PROPOSED METHOD

In this section, we provide an analytical update rule for the
TDOA parameter δk.

A. Calculation of TDOA parameter

The right-hand side of the likelihood function (4) is denoted
by using the components of the vectors x, b and the matrix
V

NH
f,t,kV

−1
f Nf,t,k

=
[
n∗f,t,Ln

∗
f,t,R

] 1

σ2
f (1− ϕ2f )

[
1 −ϕf
−ϕf 1

] [
nf,t,L
nf,t,R

]
=

1

σ2
f (1− ϕ2f )

{
|nf,t,L|2 + |nf,t,R|2

−ϕfn∗f,t,Rnf,t,L − ϕfNf,t,RN∗
f,t,L

}
, (13)

where ϕf denotes ϕf = sinc(2πfD/c).
From (1)[

nf,t,L
nf,t,R

]
=

[
xf,t,L
xf,t,R

]
−
[

1
βf,k

]
sf,t,k (14)

,
where βf,k denotes βf,k = ej2πfδk . By substituting (14)

into (13), we obtain (15)



NH
f,t,kV

−1
f Nf,t,k

=
1

σ2
f (1− ϕ2f )

{
|xf,t,L − sf,t,k|2 + |xf,t,R − βf,ksf,t,k|2

−ϕf (xf,t,R − βf,ksf,t,k)∗(xf,t,L − sf,t,k)
−ϕf (xf,t,R − βf,ksf,t,k)(xf,t,L − sf,t,k)∗

}
=

1

σ2
f (1− ϕ2f )

{
s∗f,t,kβ

∗
f,kβf,ksf,t,k

−β∗
f,ks

∗
f,t,k[xf,t,R − ϕf (xf,t,L − sf,t,k)]

−βf,ksf,t,k[xf,t,R − ϕf (xf,t,L − sf,t,k)]∗

+|xf,t,R|2 − ϕfx∗f,t,R(xf,t,L − sf,t,k)
−ϕfxf,t,R(xf,t,L − sf,t,k)∗ + |xf,t,L − sf,t,k|2

}
=

1

σ2
f (1− ϕ2f )

{
(
ξf,t,k − βf,ksf,t,k

)∗(
ξf,t,k − βf,ksf,t,k

)
+(1− ϕ2f )|xf,t,L − sf,t,k|2}, (15)

where

ξf,t,k = [xf,t,R − ϕf (xf,t,L − sf,t,k)]. (16)

Furthermore, the clause containing the above-mentioned βf,k
can be rewritten as(

ξ − βf,ksf,t,k
)∗(

ξ − βf,ksf,t,k
)

= |ξf,t,k|2 + |sf,t,k|2

−ξ∗f,t,ksf,t,kej2πfδk − ξf,t,ks∗f,t,ke−j2πfδk

= |ξf,t,k|2 + |sf,t,k|2

−2|ξf,t,k||sf,t,k| cos(ψSk
− ψξk − 2πfδk), (17)

where ψSk
and ψξk represent the phases of sf,t,k and ξf,t,k,

respectively (i.e, sf,t,k = |sf,t,k|ejψSk , ξf,t,k = |ξf,t,k|ejψξk )
If ϕf = 0, ψSk

− ψξk is the phase difference between two
microphones.

By using (15) and (17), the likelihood function (4) can be
rewritten as

p(xf,t|k, θ) =
1

2π
√
σ2
f |Vf |

exp
(
C
)

· exp
( |ξf,t,k||sf,t,k|
σ2
f (1− ϕ2)

cos(ψs − ψξ − 2πfδf,k)
)

(18)

, where C is independent of δf,k.
The last term,

exp
( |ξf,t,k||sf,t,k|
σ2
f (1− ϕ2)

cos(ψs − ψξ − 2πfδf,k)
)

(19)

has the shape of the von Mises distribution [8]

g(x|κ, µ) =
1

2πI0(κ)
eκ cos (x−µ) (20)

, where −π < x ≤ π, µ is the mean of the distribution
(−π < µ ≤ π), κ > 0 is a concentration parameter, and
I0(x) is a modified Bessel function of the first kind and order

zero. Thus, (19) indicates that the phase difference ψs−ψξ ≈
arg (xf,t,R) − arg (xf,t,L) follows a von Mises distribution
whose mean value corresponds to the frequency-dependent
TDOA µ = 2πfδf,k, and the concentration parameter is the
signal to noise ratio (SNR) related 1 value κ =

|ξf,t,k||sf,t,k|
σ2
f (1−ϕ

2
f )

.
Therefore, we can derive the update rule for δk using a

method similar to a maximum likelihood estimation of the
mixture model of the von Mises distribution. However, because
the cosine part of (19) depends on the frequency f , we have
to derive the update rule for δf,k at each frequency, which is
different from the previous frequency independent update rule
(12). By substituting (19) into (6) and setting ∂Q

∂δf,k
= 0, the

update rule becomes

2πfδf,k = arctan

∑
tmf,t,k|ξf,t,k||sf,t,k| sin(ψξk − ψSk

)∑
tmf,t,k|ξf,t,k||sf,t,k| cos(ψξk − ψSk

)
(21)

.
It should be noted that the function arctan(x) is unique only

if −π/2 < x < π/2. However, 2πfδf,k can fall in the −π
to π range. Therefore, when |x| ≥ π/2, we have to modify
the estimated value by checking the inflection point of the
auxiliary function. To accomplish this, we calculate the second
order differential of the auxiliary function, and modify the
values as follows

• If δf,k < 0, ∂2Q
∂(δ2f,k)

≥ 0, then 2πfδf,k ← 2πfδf,k + π

• If δf,k > 0, ∂2Q
∂(δ2f,k)

≥ 0, then 2πfδf,k ← 2πfδf,k − π
• Otherwise, we do not modify 2πfδf,k
In summary, the proposed method estimates the parameters

σ2
f , sf,t,k and mf,t,k in the same ways as described in

Section 2, and the frequency-dependent TDOA parameter δf,k
is calculated with the update rule (21).

B. Estimation of TDOA parameters
We described how to compute the TDOA parameters us-

ing the method proposed in [6]. However, the TDOAs are
estimated independently in individual frequency bins by this
method. We propose the following three methods for estimat-
ing the frequency-independent TDOAs.

• PROPOSED METHOD A
A presumed δf,k is used as an independent TDOA for
every frequency bin.

• PROPOSED METHOD B
An average value of δf,k over all the frequency bins is
used as a TDOA estimate for the source indexed by k.
(This means δk = 1

F

∑
f δf,k)

Let this be PROPOSED METHOD B.
• PROPOSED METHOD C

Figure 1 shows an example set of estimated TDOAs
obtained by the method proposed in [6].
The solid lines show the value of the estimated TDOA,
and the dashed lines show the values of the correct

1When we assume that ϕf = 0,
|ξf,t,k||sf,t,k|

σ2
f
(1−ϕ2)

=
|sf,t,k|2

σ2
f

, which is the

SNR.
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Fig. 1. Sample of calculated δf,k

TDOAs. Figure 1 shows that the estimation error is very
large in low frequency bins. Moreover, many of the
estimated TDOAs in high frequency bins also include
many errors. So, in PROPOSED METHOD C, the range
of f to be used for the estimation is restricted. An average
value of δf,k(200 Hz < f < 3000 Hz) is adopted and it
is used as a TDOA estimate of each source signal. (This
means δk = 1

3000−200

∑
200<f<3000 δf,k)

Let this be PROPOSED METHOD C.

C. Separate source signals

The proposed separation method employs the procedure
described in section II, except that (12) is replaced by (21).

IV. EXPERIMENTS

A. Experimental conditions

We performed experiments with measured impulse re-
sponses in a room with a reverberation time of 130 ms.
The experimental setup is shown in Fig. 2. We used two
microphones, whose spacing was 4 cm. The number of sources
K was K = 2 (70◦ and 150◦), or K = 3 (30◦, 70◦ and
150◦). Observed signals are made by convolving the measured
room impulse responses and 5-second English speech signals
sampled at 8 kHz. The frame size and frame shift for STFT
were 64 ms and 16 ms, respectively.

In our experiments we used a Gaussian noise with zero
mean and a covariance matrix of σ2

fVf , where Vf was given
by (3), and σf was determined so that the SNR with respect
to source 1 had a preset value.

We compared the direction of arrival (DOA) estimation
accuracy and computational times of the conventional method
and PROPOSED METHODS A, B and C. For a discrete search
of the DOA parameters δk with the conventional method,
we compared the Q functions of the 0◦ to 180◦ range in
increments of 1◦ to find the optimum according to Eq, (12).

Room size: 
4.45 m × 3.55 m × 2.50 m

Reverberation time: 
130 ms

Sampling rate: 
8000 Hz

4 cm

Door

30 o

70 o

15
0

o

Fig. 2. Experimental setup

B. DOA estimation accuracy

We compared DOA estimation errors. For each K, 10
speaker combinations were tested and the results were aver-
aged. Table I shows the errors of the angular estimation. We
can see from table I that PROPOSED METHOD C was the
best error of the proposed methods. However, the conventional
method was comparable to or even better than all the proposed
methods.

To investigate the influence of noise power and reverberation
on the TDOA estimation we also compared the estimation
errors of the conventional and proposed methods by changing
the SNR and the reverberation time. Table II shows the
influence of the noise on the TDOA estimation performance.
The number of sources K was 3 (30◦, 70◦ and 150◦), and the
other conditions were the same as those in Section IV-A. By
adjusting the power of the noise σ2

f , the SNR was set at 27.5
dB (= Table IV. (b)), 20 dB (Table II. (a)), and 10 dB (Table
II. (b)).

Table III shows the influence of the reverberation time on
the TDOA estimation performance. The number of sources K
was 3 (30◦, 100◦ and 135◦), and the other conditions were the
same as those in Section 4.1. The reverberation time was set
at 300 ms.

We can see from Tables I, II and III that PROPOSED
METHOD C was the best of the three proposed methods.
However, the conventional method was comparable to or even
better than all the proposed methods.

C. Separation performance and computational time

We compared the separation performance and computational
time of the conventional method and the proposed methods A,
B and C. The separation performance was evaluated in terms
of the signal to interference-plus-noise ratio (SINR) and the
signal-to-distortion ratio (SDR) [2]. For each K, 10 speaker
combinations were tested and the results were averaged.

Figure 3 shows example spectrograms of the signals sep-
arated by the different methods. The figure shows that the
source signal was successfully separated from the observed



Fig. 3. Signal spectrogram. Top left: observed signal, top center: one example of source image, top right: separated signal with conventional method, bottom
left: separated signal with proposed method A, bottom center: separated signal with proposed method B, bottom right: separated signal with proposed method
C.

TABLE I
ANGULAR ESTIMATION ERROR

(a) K = 2 (70◦ and 150◦)
Method Source1 Source2

Conventional 1.1[deg] 3.0[deg]
Proposed A 2.2[deg] 6.1[deg]
Proposed B 3.9[deg] 3.0[deg]
Proposed C 1.3[deg] 0.6[deg]

(b) K = 3 (30◦, 70◦ and 150◦)
Method Source1 Source2 Source3

Conventional 2.8[deg] 1.5[deg] 3.5[deg]
Proposed A 12.1[deg] 6.3[deg] 7.7[deg]
Proposed B 4.1[deg] 1.9[deg] 6.4[deg]
Proposed C 5.6[deg] 2.4[deg] 1.6[deg]

speech mixture. Table IV shows the SINR, SDR and compu-
tational time obtained in the experiments. We can see from
table IV that our proposed method achieved a comparable
performance to the conventional approach and greatly reduced
the computational time by 1/10 to 1/20. This result shows that
our proposed method can successfully separate signals using
the estimated TDOA parameter δk without using an exhaustive
search that is essential with the conventional method.

To investigate the influence of noise power and reverberation
on separation performance, we also compared the SINR, SDR,
and computational time of the conventional and the proposed
methods by changing the SNR and reverberation time.

Table V shows the influence of noise on the separation

TABLE II
DOA ESTIMATION ACCURACY UNDER SEVERAL SNR CONDITIONS

(a) SNR = 20 [dB]
Method Source1 Source2 Source3

Conventional 1.7[deg] 0.3[deg] 4.2[deg]
Proposed A 12.2[deg] 6.2[deg] 7.2[deg]
Proposed B 5.0[deg] 0.7[deg] 6.4[deg]
Proposed C 4.9[deg] 2.2[deg] 3.2[deg]

(b) SNR = 10 [dB]
Method Source1 Source2 Source3

Conventional 0.1[deg] 1.7[deg] 5.0[deg]
Proposed A 13.0[deg] 8.9[deg] 7.4[deg]
Proposed B 5.3[deg] 9.5[deg] 6.4[deg]
Proposed C 4.6[deg] 0.4[deg] 3.4[deg]

TABLE III
DOA ESTIMATION UNDER A REVERBERATION CONDITION

reverberation time = 300 [ms]
Method Source1 Source2 Source3

Conventional 25.3[deg] 26.0[deg] 6.8[deg]
Proposed A 11.2[deg] 26.5[deg] 5.6[deg]
Proposed B 26.3[deg] 39.0[deg] 2.8[deg]
Proposed C 30.0[deg] 41.4[deg] 7.6[deg]

performance. The number of sources K was 3 (30◦, 70◦ and
150◦), and the other conditions were the same as those in
Section 4.1. By adjusting the power of the noise σ2

f , the SNR
was set at 27.5 dB (= Table IV (b)), 20 dB (Table V (a)), and
10 dB (Table V (b)).



TABLE IV
SOURCE SEPARATION RESULTS

(a) K = 2 (70◦ and 150◦)
Method SINR SDR Calculation Time

Conventional 15.3[dB] 6.7[dB] 398.6[s]
Proposed A 14.8[dB] 7.7[dB] 25.7[s]
Proposed B 15.1[dB] 6.6[dB] 16.5[s]
Proposed C 15.3[dB] 6.8[dB] 16.4[s]

(b) K = 3 (30◦, 70◦ and 150◦)
Method SINR SDR Calculation Time

Conventional 7.6[dB] 5.4[dB] 451.5[s]
Proposed A 6.7[dB] 5.9[dB] 39.1[s]
Proposed B 7.6[dB] 5.2[dB] 15.0[s]
Proposed C 7.7[dB] 5.4[dB] 14.8[s]

TABLE V
PERFORMANCE UNDER SEVERAL SNR CONDITIONS

(a) SNR = 20 [dB]
Method SINR SDR Calculation Time

Conventional 7.6[dB] 5.4[dB] 470.1[s]
Proposed A 6.7[dB] 5.9[dB] 41.0[s]
Proposed B 7.5[dB] 5.3[dB] 17.8[s]
Proposed C 7.6[dB] 5.4[dB] 14.5[s]

(b) SNR = 10 [dB]
Method SINR SDR Calculation Time

Conventional 5.3[dB] 5.5[dB] 512.2[s]
Proposed A 6.1[dB] 5.9[dB] 47.1[s]
Proposed B 4.9[dB] 5.3[dB] 31.6[s]
Proposed C 5.3[dB] 5.4[dB] 15.4[s]

Table VI shows the influence of the reverberation on the
separation performance. The number of sources K was 3
(30◦, 100◦ and 135◦), and the other conditions were the same
as those in Section 4.1. The reverberation time was set at 300
ms.

We can see from Tables V and VI that the performance
of our proposed method was comparable to that of the con-
ventional method in that if reduced the computational time,
regardless of noise and reverberation.

V. CONCLUSION

This paper proposed new methods for estimating the
TDOAs of multiple sources for sparseness-based blind source
separation in noisy and reverberant environments. The pro-
posed methods determine a unique TDOA for each sound
source by taking the average of the TDOAs over different
frequency bins, which can be estimated in a computationally
very efficient manner by using an analytical update equation.
We confirmed that our proposed methods can greatly reduce
the computation time without degrading the quality of the
separated signals by comparison with the conventional method.
However, we also confirmed that the TDOA estimation accu-
racy of the proposed methods was slightly degraded compared
with that of the conventional method. We plan to improve our
methods as regards accuracy of TDOA estimation, to evaluate
them in real environments, and to introduce a noise model that
is more appropriate for reverberation.

TABLE VI
PERFORMANCE UNDER A REVERBERATION CONDITION

reverberation time = 300 [ms]
Method SINR SDR Calculation Time

Conventional 7.0[dB] 2.9[dB] 962.5[s]
Proposed A 6.3[dB] 2.7[dB] 65.9[s]
Proposed B 5.1[dB] 3.0[dB] 24.7[s]
Proposed C 5.9[dB] 2.9[dB] 24.9[s]
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