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Abstract

Rescue robots have been developed for search and rescue oper-
ations in times of large-scale disasters. Such a robot is used to
search for survivors in disaster sites by capturing their voices
with its microphone array. However, since the robot has many
vibration motors, ego noise is mixed with voices, and it is dif-
ficult to differentiate the ego noise from a call for help from a
disaster survivor. In our previous works, an ego noise reduction
technique that combines a method of blind source separation
called independent low-rank matrix analysis, noise cancellation
and postfilter called MOSIE was proposed. Moreover, we ex-
perimentally confirm that the operator can perceive the direc-
tion of a survivor’s location from the processed stereo sound.
However, the stereo sound was not suitable for people to listen
because it was recorded by robot’s microphones. To solve this
problem, in this study, we applied an extension of microphone
spacing by virtual microphone technique. By performing in
a simulated disaster site, we confirm that the operator can per-
ceive the direction of a survivor’s location by applying a speech
enhancement technique combining independent low-rank ma-
trix analysis, noise cancellation to the observed multichannel
noisy signals and an extension of microphone spacing by vir-
tual microphone technique.

1. Introduction

It is important to develop robots for search and rescue op-
erations during large-scale disasters such as earthquakes. The
Tough Robotics Challenge is one of the research and devel-
opment programs in the Impulsing Paradigm Change through
Disruptive Technologies Program (ImPACT) [1]. One of the
robots developed in this program is a hose-shaped rescue robot.
This robot is long and slim and it can investigate narrow spaces
into which conventional remotely operable robots cannot en-
ter. This robot searches for disaster survivors by capturing their
voice with its microphones, which are attached around itself.
However, there is a serious problem when recording speech us-
ing the robot. Because of the mechanism used to operate the
robot, very loud ego noise is mixed in the microphones. In our
previous works [2], an effective noise reduction technique for
stereo signal was proposed. we also confirmed that an operator
can perceive the direction of a survivor’s location by applying
our previous speech enhancement technique to observed multi-
channel noisy signals recorded by a hose-shaped rescue robot
with a pairwise (stereo) microphone array. However, in our
previous work, difference in spacing between microphones and
the two ears of the operator was not taken into account. In this
paper, we apply virtual microphone technique to extend the mi-
crophone spacing of the robot to match human ear spacing.
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Figure 1: Hose-shaped rescue robot.
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Figure 2: Structure of hose-shaped rescue robot.

2. Hose-shaped Rescue Robot and Ego Noise

2.1 Hose-Shaped Rescue Robot

Figure 1 shows an image of the hose-shaped rescue robot.
The robot basically consists of a hose as its axis with cilia tape
wrapped around it and has eight microphones, seven vibration
motors, a camera, and lamps. Figure 2 shows the positions of
its microphones and vibration motors. In the robot, two mi-
crophones are attached between each vibration motor, and the
microphones are sequentially rotated by 45◦ with each edge.
In other words, the robot has four stereo microphones that are
rotated at 45◦ intervals. Furthermore, the robot moves forward
slowly as a result of the reaction between the cilia and floor
through the vibration of the cilia tape induced by the vibration
motors. Figure 3 schematically shows the principle of move-
ment of the hose-shaped rescue robot. When the motors vi-
brate, state (1) changes to state (2) through the friction between
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Figure 3: Principle of movement of hose-shaped rescue robot.

Figure 4: Flow of the proposed method.

the cilia and floor, then state (2) changes to state (3) as a result
of the cilia slipping. The hose-shaped rescue robot moves by
repeating such changes in its state.

2.2 Problem in Recording Speech

Recording speech using the hose-shaped rescue robot has a
serious problem. During the operation of the robot, very loud
ego noise is mixed in the input to the microphones. The main
sources of the ego noise are the driving sound of the vibra-
tion motors, the fricative sound generated between the cilia and
floor, and the noise generated by microphone vibration. In an
actual disaster site, the voice of a person seeking help may be
not sufficiently loud to capture and it may be smaller than the
ego noise.

3. Proposed method

The method consists of three steps (Fig. 4). In the first step,
we apply a BSS method called independent low-rank matrix
analysis (ILRMA) that is used to estimate both the speech and
ego noise for multichannel signal. In the second step, a noise
cancellation process is applied to the resulting speech signal
estimated by the BSS method. In the third step, we apply virtual
microphone technique to extend the microphone spacing of the
robot to match human ear spacing.

3.1 Independent Low-Rank Matrix Analysis

We assume that M sources are observed using M micro-
phones (determined case). The sources and the observed and
separated signals in each time-frequency slot are as follows:

s(f, τ) = (s(f, τ, 1) · · · s(f, τ,M))t, (1)
x(f, τ) = (x(f, τ, 1) · · · x(f, τ,M))t, (2)
y(f, τ) = (y(f, τ, 1) · · · y(f, τ,M))t, (3)

where f and τ are indexes of frequency and time, respectively,
and t denotes the vector transpose. All the entries of these
vectors are complex values. When the window size in short-
time Fourier transform (STFT) is sufficiently longer than the

impulse response between a source and microphone, we can
approximately represent the observed signal as

x(f, τ) = A(f)s(f, τ). (4)

Here, A(f) = (a(f, 1) · · · a(f,M)) is an M × M mix-
ing matrix of the observed signals. Denoting W (f) =

(w(f, 1) · · · w(f,M))
h as the demixing matrix, the separated

signal y(f, τ) is represented as

y(f, τ) = W (f)x(f, τ), (5)

where h is the Hermitian transpose. We use ILRMA, which is a
method unifying IVA and ISNMF. ILRMA allows us to model
the statistical independence between sources and the source-
wise time-frequency structure at the same time. We explain
the formulation and algorithm derived by Kitamura et al. [3,4].
The observed signals are represented as

X(f, τ) = x(f, τ)x(f, τ)h, (6)

where X(f, τ) is the correlation matrix between channels of
size M ×M . The diagonal elements of X(f, τ) represent real-
valued powers detected by the microphones, and the nondi-
agonal elements represent the complex-valued correlations be-
tween the microphones. The separation model of MNMF that is
an extension of simple NMF for multichannel signals, X̂(f, τ),
used to approximate X(f, τ) is represented as

X(f, τ) ≈ X̂(f, τ) =
∑
m

H(f,m)
∑
l

t(f, l,m)v(l, τ,m), (7)

where m = 1 · · ·M is the index of the sound sources, H(f,m)
is an M × M spatial covariance matrix for each frequency i
and source m, and H(f,m) = a(f,m)a(f,m)h is limited to a
rank-1 matrix. This assumption corresponds to t(f, l,m) ∈ R+

and v(l.τ,m) ∈ R+ being the elements of the basis matrix
T (m) and activation matrix V (m), respectively. This rank-1
spatial constraint leads to the following cost function:

Q =
∑
f,τ

[∑
m

|y(f, τ,m)|2∑
l t(f, l,m)v(l, τ,m)

− 2 log |detW (i)|

+
∑
m

log
∑
l

t(f, l,m)v(l, τ,m)

]
,

(8)

namely, the estimation of H(f,m) can be transformed to the
estimation of the demixing matrix W (i). This cost function is
equivalent to the Itakura–Saito divergence between X(f, τ) and
X̂(f, τ), and we can derive

t(f, l,m)←

t(f, l,m)

√
Σj |y(f, τ,m)|2v(l, τ,m) (Σl′t(f, l′,m)v(l′, τ,m))

−2

Σjv(l, τ,m) (Σl′t(f, l′,m)v(l′, τ,m))
−1 , (9)

v(l, τ,m)←

v(f, l,m)

√
Σi|y(f, τ,m)|2t(f, l,m) (Σl′t(f, l′,m)v(l′, τ,m))

−2

Σit(f, l,m) (Σl′t(f, l′,m)v(l′, τ,m))
−1 ,

(10)

r(f, τ,m) =
∑
l

t(f, l,m)v(l, τ,m), (11)

Z(f,m) =
1

J

∑
j

1

r(f, τ,m)
x(f, τ)x(f, τ)h, (12)

w(f,m)← (W (f)Z(f,m))
−1

e(m), (13)
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Figure 5: Single noise canceller.

where em is a unit vector whose mth element is one. We can
simultaneously estimate both the sourcewise time-frequency
model r(f, τ,m) and the demixing matrix W (f) by iterating
(9)–(13) alternately. After the cost function converges, the sep-
arated signal y(f, τ) can be obtained as (5). Note that since
the signal scale of y(f, τ) cannot be determined, we apply a
projection-back method [6] to y(f, τ) to determine the scale.

The demixing filter in ILRMA is time-invariant over several
seconds. To achieve time-variant noise reduction, we apply a
noise canceller for the postprocessing of ILRMA to reduce the
remaining time-variant ego noise components. An noise can-
celler usually requires a reference microphone to observe only
the noise signal. Thus, we utilize the noise estimates obtained
by ILRMA as the noise reference signals.

3.2 Noise Canceller

The noise canceller [7] requires a reference microphone lo-
cated near a noise source. The recorded noise reference signal
nr(t) is utilized to reduce the noise in the observed speech sig-
nal s1(t) as shown in Fig. 5. We here assume that both s1(t)
and nr(t) are simultaneously recorded. The observed signal
contaminated with the noise source can be represented as

ys(t) = s1(t) + nr(t). (14)

We consider that the noise signal nr(t) is strongly correlated
with the reference noise signal yn(t) and that nr(t) can be rep-
resented by a linear convolution model as

nr(t) ≃ n̂r(t) = ĥ(t)tyn(t), (15)

where yn(t) = [yn(t) yn(t− 1) · · · yn(t−N +1)]t is the ref-
erence microphone input from the current time t to the past N
samples and ĥ(t) = [ĥ1(t) ĥ2(t) · · · ĥN (t)]t is the estimated
impulse response. From (15), the speech signal s1(t) is ex-
tracted as follows by subtracting the estimated noise ĥ(t)tyn(t)
from the observation:

z(t) = x(t)− ĥ(t)tyn(t), (16)

where z(t) is the estimated speech signal. The filter ĥ(t) can
be obtained by minimization of the mean square error. In this
paper, we use the normalized least mean square (NLMS) al-
gorithm [8] to estimate ĥ(t). From the NLMS algorithm, the
update rule of the filter ĥ(t) is given as

ĥ(t+ 1) = ĥ(t) + µ
z(t)

||yn(t)||2
yn(t). (17)

Figure 6: Block diagram of signal processing with virtual mi-
crophone array technique

Figure 7: Arrangement of actual and virtual microphones

3.3 Virtual Microphone Technique

F In this work, we used virtual microphone technique [9] to
extend the microphone spacing of the robot to match human
ear spacing. In this work, we generate a virtual microphone
signal zv(f ′) by nonlinear interpolation or extrapolation of two
real microphone signals in frequency domain as an estimate
of a signal at a virtual microphone position where there is no
real microphone (Fig. 6). In this work, we consider the virtual
microphone at the point with a distance ratio of 1 : (α − 1)
(α > 1) from the two real microphone positions (Fig. 7).

Here, we formulate the extrapolation of the phase as follows.
The phase and amplitude of the signal at microphone i are de-
noted by Ai(f

′) and ϕi(f
′), and are respectively given as

Ai(f
′) = |zi (f ′)| , (18)

ϕi(f
′) = ∠zi (f ′) = arctan

Im (zi (f
′))

Re (zi (f ′))
. (19)

The phase of the virtual microphone signal is estimated as fol-
lows.

ϕv(f
′) = αϕ1(f

′) + (α− 1)ϕ2(f
′). (20)

Where, α is microphone interpolation parameter. Note that the
observed phase has an aliasing ambiguity given by ϕi(f

′) ±
2niπ with integer ni, therefore, we derived an unwrap phase
from a phase angle for extrapolating phase difference between
phases at Mic. 1 and Mic. 2. The virtual microphone signal
is obtained as follows in terms of the extrapolated phase and
amplitude:

zv(f
′) = Av(f

′) exp (jϕv(f
′)) . (21)

In this paper, Av(f
′) is output signal of Noise canceller, and

we obtained zi(f
′) by an FFT of the whole observed signal.

4. Experimental Evaluation

4.1 Condition

In the evaluation, we used signals recorded by the hose-
shaped rescue robot. We recorded signals arriving from three
different directions and evaluated processed sound without vir-
tual microphone and proposed method. Figure 8 shows position
of microphones and a speech source.

The processed stereo signal that the operator hears was
recorded by microphones 1 and 2, which are attached to the
front of the robot, to which the projection-back method is ap-
plied to adjust the scale to the observed signal at microphones
1 and 2.
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Figure 8: Position of microphones and a speech source.

Table 1: Experimental conditions

Sampling frequency 16 kHz
Window length of ILRMA 2048 samples
Window shift of ILRMA STFT length/4

Number of bases 15
Number of iterations 50

Filter length of noise canceller 1600 taps
Step size of NLMS (µ) 0.1

We recorded signals arriving from left and right and eval-
uated each signal. First, we applied ILRMA to multichannel
noisy signals that consist of a survivor’s voice and ego noise.
We found an estimated signal that includes most of the speech
components, which was used as yL(t) and yR(t), by employing
the spectrograms and microphones chosen in advance as refer-
ence microphones. To adjust the scale to the observed signal at
microphones 1 and 2, we applied the projection-back method
to an estimated signal.

Next, we applied the noise canceller for postprocessing of
ILRMA to reduce the remaining time-variant ego noise. Then,
we used the other microphone as a reference microphone, for
example, we used microphone 2 as a reference microphone
when applying the noise canceller to the estimated signal ob-
served by microphone 1.

Next, we applied an extension of microphone spacing by
virtual microphone technique. Finally, the operator hears the
stereo sound. In this experiment, we use 4 signals: 2 signals
that applied ILRMA and noise canceller and 2 signals that pro-
cessed by proposed method.

To confirm that the location of the survivor can be deter-
mined by hearing the processed sound, the operator hears the
sound with a headphone and chooses either left or right. Other
experimental conditions are shown in Table 1.

4.2 Result

For each signal, directions of arrival which subjects an-
swered are shown in Fig. 9. The subjects answered that sound
images under the condition of“ without virtual microphone”
were localized in the azimuths of around 70-degree and 110-
degrees (white circles in Fig. 9), close to the center (front) due
to short inter-aural time difference. Oppositely,“ with virtual
microphones”, the sound images are perceived to be closer to
the direction of the sound sources, in the azimuths of around
10-degree and 170-degree (black circles in Fig. 9). In this pa-
per, since the amplitude is not extrapolated, the sound images

Figure 9: Direction of arrival which the subjects answered.

under the condition of“with virtual microphones”might not
be localized in the azimuths of the actual sound sources.

5. Conclusion

In this paper, we have proposed noise reduction method
adapted to human ears using hose-shaped rescue robot. The
experimental results showed that the proposed method has bet-
ter direction recognition accuracy than conventional method.
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