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Abstract—Rescue robots have been developed for search and
rescue operations in times of large-scale disasters. Such a robot
is used to search for survivors in disaster sites by capturing their
voices with its microphone array. However, since the robot has
many vibration motors, ego noise is mixed with voices, and it is
difficult to differentiate the ego noise from a call for help from a
disaster survivor. In our previous works, an ego noise reduction
technique that combines a method of blind source separation
called independent low-rank matrix analysis and postprocessing
for noise cancellation was proposed. In the practical use of this
robot, to determine the precise location of survivors, the direction
of the observed voice should be estimated after the ego noise
reduction process. To achieve this objective, in this study, a new
hose-shaped rescue robot with microphone arrays was developed.
Moreover, we adapt postfilter called MOSIE to our previous noise
reduction method to listen to stereo sound because this robot
can record stereo sound. By performing in a simulated disaster
site, we confirm that the operator can perceive the direction
of a survivor’s location by applying a speech enhancement
technique combining independent low-rank matrix analysis, noise
cancellation, and postfiltering to the observed multichannel noisy
signals.

I. INTRODUCTION

It is important to develop robots for search and rescue
operations during large-scale disasters such as earthquakes.
The Tough Robotics Challenge is one of the research and
development programs in the Impulsing Paradigm Change
through Disruptive Technologies Program (ImPACT) [1]. One
of the robots developed in this program is a hose-shaped
rescue robot. This robot is long and slim and it can investigate
narrow spaces into which conventional remotely operable
robots cannot enter. This robot searches for disaster survivors
by capturing their voice with its microphones, which are
attached around itself. However, there is a serious problem
when recording speech using the robot. Because of the mech-
anism used to operate the robot, very loud ego noise is
mixed in the microphones. In our previous works [2]–[4],
an effective technique of ego noise reduction that combines
a method of blind source separation called independent low-
rank matrix analysis (ILRMA) [5], [6] and postprocessing for
noise cancellation [2] was proposed. In this paper, we add
postfiltering to a noise reduction method called the minimum
mean-square error (MMSE) estimation with an optimizable
speech model and inhomogeneous error criterion (MOSIE)
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Fig. 1: Hose-shaped rescue robot.

to obtain better sound. This method is a spatial-cue-aware
binaural signal separation algorithm and can estimate binaural
signals using a statistical model based on the chi distribution.
A method of posture estimation for the hose-shaped rescue
robot has also been recently proposed [7].

In the practical use of this robot, to determine the precise
location of survivors, the direction of the observed voice
should be estimated after the ego noise reduction process. To
achieve this objective, we have developed a new hose-shaped
rescue robot that has a pairwise (stereo) microphone array.
As reported in this paper, we experimentally confirm that the
operator can perceive the direction of a survivor’s location by
listening to stereo sound after noise reduction by a combining
ILRMA, noise cancellation and MOSIE.

II. HOSE-SHAPED RESCUE ROBOT AND EGO NOISE

A. Hose-Shaped Rescue Robot

Figure 1 shows an image of the hose-shaped rescue robot.
The robot basically consists of a hose as its axis with cilia tape
wrapped around it and has eight microphones, seven vibration
motors, a camera, and lamps. Figure 2 shows the positions
of its microphones and vibration motors. In the robot, two
microphones are attached between each vibration motor, and
the microphones are sequentially rotated by 45◦ with each
edge. In other words, the robot has four stereo microphones
that are rotated at 45◦ intervals. Furthermore, the robot moves
forward slowly as a result of the reaction between the cilia
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Fig. 2: Structure of hose-shaped rescue robot.

Fig. 3: Principle of movement of hose-shaped rescue robot [8].

and floor through the vibration of the cilia tape induced by the
vibration motors. Figure 3 schematically shows the principle
of movement of the hose-shaped rescue robot [8]. When the
motors vibrate, state (1) changes to state (2) through the
friction between the cilia and floor, then state (2) changes
to state (3) as a result of the cilia slipping. The hose-shaped
rescue robot moves by repeating such changes in its state.

B. Problem in Recording Speech

Recording speech using the hose-shaped rescue robot has a
serious problem. During the operation of the robot, very loud
ego noise is mixed in the input to the microphones. The main
sources of the ego noise are the driving sound of the vibration
motors, the fricative sound generated between the cilia and
floor, and the noise generated by microphone vibration. In an
actual disaster site, the voice of a person seeking help may be
not sufficiently loud to capture and it may be smaller than the
ego noise.

III. EGO NOISE REDUCTION METHOD

Recently, many ego noise reduction methods have been
proposed [9]–[13]. In our case, the target and noise source
locations are unknown. For this reason, we can consider the
use of a blind source separation (BSS) method. However, using
only a BSS method, time-varying components remain because
the robot moves. To solve this problem, in our previous work
[2]–[4], we proposed an ego noise reduction method for a
hose-shaped rescue robot combining the BSS method and
noise cancellation. Figure 4 shows the flow of the ego noise
reduction method. The method consists of three steps. In the
first step, a BSS method such as independent vector analysis
(IVA) or ILRMA1 is used to estimate both the speech and

1Note that the authors have renamed the method. In [5], [6], ILRMA was
called rank-1 MNMF.

B
lin

d
 s

o
u
rc

e
 s

e
p
a
ra

ti
o
n

+
Noise 

reference

𝑦𝑛(𝑡)

Estimated speech

𝑦𝑠 𝑡 = 𝑠1 𝑡 + 𝑛𝑟(𝑡)

Estimated noise

Filter : ℎ

+

－

Noise canceller

Output

𝑧 𝑡 = 𝑦𝑠 𝑡 − ො𝑛𝑟(𝑡)

Estimated 

noise

ො𝑛𝑟 𝑡 = ℎ𝑇𝑦𝑛(𝑡)

𝑦𝑛1(𝑡)

𝑦𝑛6(𝑡)

𝑦𝑛3(𝑡)

𝑦𝑛5(𝑡)

𝑦𝑛4(𝑡)

𝑦𝑛2(𝑡)

𝑦𝑛7(𝑡)

Speech: 𝑠1 𝑡 : Microphones

: Vibration motors

S
e
le

c
t
s
o

u
rc

e
s
 a

n
d
 m

ic
ro

p
h
o

n
e
s

…

noise

n(t)

Mic.1, 2

Mic.7, 8

Motor.1

Motor.2

Motor.7

Fig. 4: Flow of the ego noise reduction method.

ego noise. In the second step, a noise cancellation process
is applied to the resulting speech signal estimated by the
BSS method. In the third step, we adapt MOSIE [14]. In
this work, we use ILRMA for the BSS method because
the time-frequency structure of the ego noise consists of
several repeated spectral patterns, enabling it to be expressed
effectively by nonnegative matrix factorization (NMF), which
is used to estimate the source model in ILRMA.

A. Independent Low-Rank Matrix Analysis

We assume that M sources are observed using M micro-
phones (determined case). The sources and the observed and
separated signals in each time-frequency slot are as follows:

s(f, τ) = (s(f, τ, 1) · · · s(f, τ,M))t, (1)
x(f, τ) = (x(f, τ, 1) · · · x(f, τ,M))t, (2)
y(f, τ) = (y(f, τ, 1) · · · y(f, τ,M))t, (3)

where f and τ are indexes of frequency and time, respectively,
and t denotes the vector transpose. All the entries of these
vectors are complex values. When the window size in short-
time Fourier transform (STFT) is sufficiently longer than the
impulse response between a source and microphone, we can
approximately represent the observed signal as

x(f, τ) = A(f)s(f, τ). (4)

Here, A(f) = (a(f, 1) · · · a(f,M)) is an M × M mix-
ing matrix of the observed signals. Denoting W (f) =
(w(f, 1) · · · w(f,M))

h as the demixing matrix, the sepa-
rated signal y(f, τ) is represented as

y(f, τ) = W (f)x(f, τ), (5)

where h is the Hermitian transpose. Here we use ILRMA,
which is a method unifying IVA and ISNMF. ILRMA allows
us to model the statistical independence between sources and
the sourcewise time-frequency structure at the same time. We
explain the formulation and algorithm derived by Kitamura et
al. [5], [6]. The observed signals are represented as

X(f, τ) = x(f, τ)x(f, τ)h, (6)
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where X(f, τ) is the correlation matrix between channels of
size M × M . The diagonal elements of X(f, τ) represent
real-valued powers detected by the microphones, and the non-
diagonal elements represent the complex-valued correlations
between the microphones. The separation model of MNMF,
X̂(f, τ), used to approximate X(f, τ) is represented as

X(f, τ) ≈ X̂(f, τ) =
∑
m

H(f,m)
∑
l

t(f, l,m)v(l, τ,m), (7)

where m = 1 · · ·M is the index of the sound sources, H(f,m)
is an M ×M spatial covariance matrix for each frequency i
and source m, and H(f,m) = a(f,m)a(f,m)h is limited to a
rank-1 matrix. This assumption corresponds to t(f, l,m) ∈ R+

and v(l.τ,m) ∈ R+ being the elements of the basis matrix
T (m) and activation matrix V (m), respectively. This rank-1
spatial constraint leads to the following cost function:

Q =
∑
f,τ

[∑
m

|y(f, τ,m)|2∑
l t(f, l,m)v(l, τ,m)

− 2 log |detW (f)|

+
∑
m

log
∑
l

t(f, l,m)v(l, τ,m)

]
, (8)

namely, the estimation of H(f,m) can be transformed to the
estimation of the demixing matrix W (f). This cost function
is equivalent to the Itakura–Saito divergence between X(f, τ)
and X̂(f, τ), and we can derive

t(f, l,m)←

t(f, l,m)

√
Σj |y(f, τ,m)|2v(l, τ,m) (Σl′t(f, l′,m)v(l′, τ,m))

−2

Σjv(l, τ,m) (Σl′t(f, l′,m)v(l′, τ,m))
−1 , (9)

v(l, τ,m)←

v(f, l,m)

√
Σi|y(f, τ,m)|2t(f, l,m) (Σl′t(f, l′,m)v(l′, τ,m))

−2

Σit(f, l,m) (Σl′t(f, l′,m)v(l′, τ,m))
−1 , (10)

r(f, τ,m) =
∑
l

t(f, l,m)v(l, τ,m), (11)

Z(f,m) =
1

J

∑
j

1

r(f, τ,m)
x(f, τ)x(f, τ)h, (12)

w(f,m)← (W (f)Z(f,m))
−1

e(m), (13)

where em is a unit vector whose mth element is one. We can
simultaneously estimate both the sourcewise time-frequency
model r(f, τ,m) and the demixing matrix W (f) by iterating
(9)–(13) alternately. After the cost function converges, the
separated signal y(f, τ) can be obtained as (5). Note that since
the signal scale of y(f, τ) cannot be determined, we apply a
projection-back method [16] to y(f, τ) to determine the scale.

The demixing filter in ILRMA is time-invariant over several
seconds. To achieve time-variant noise reduction, we applied
a noise canceller (NC) for the postprocessing of ILRMA to
reduce the remaining time-variant ego noise components. An
NC usually requires a reference microphone to observe only
the noise signal. Thus, we utilized the noise estimates obtained
by ILRMA as the noise reference signals.
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Fig. 5: Single noise canceller.

B. Noise Canceller

The NC [17] requires a reference microphone located near
a noise source. The recorded noise reference signal nr(t) is
utilized to reduce the noise in the observed speech signal
s1(t) as shown in Fig. 5. We here assume that both s1(t)
and nr(t) are simultaneously recorded. The observed signal
contaminated with the noise source can be represented as

ys(t) = s1(t) + nr(t). (14)

We consider that the noise signal nr(t) is strongly correlated
with the reference noise signal yn(t) and that nr(t) can be
represented by a linear convolution model as

nr(t) ≃ n̂r(t) = ĥ(t)tyn(t), (15)

where yn(t) = [yn(t) yn(t − 1) · · · yn(t − N + 1)]t is
the reference microphone input from the current time t to
the past N samples and ĥ(t) = [ĥ1(t) ĥ2(t) · · · ĥN (t)]t is
the estimated impulse response. From (15), the speech signal
s1(t) is extracted as follows by subtracting the estimated noise
ĥ(t)tyn(t) from the observation:

z(t) = x(t)− ĥ(t)tyn(t), (16)

where z(t) is the estimated speech signal. The filter ĥ(t) can
be obtained by minimization of the mean square error. In
this paper, we use the normalized least mean square (NLMS)
algorithm [18] to estimate ĥ(t). From the NLMS algorithm,
the update rule of the filter ĥ(t) is given as

ĥ(t+ 1) = ĥ(t) + µ
z(t)

||yn(t)||2
yn(t). (17)

IV. POSTFILTERING BASED ON MOSIE

We adopt MOSIE to the postprocessing stage for achieving
further noise reduction. In this work, we process the stereo
sound so that operator can listen in binaural fashion. The
stereo sound is recorded and reconstructed at the arbitrarily
selected pairwise microphone, and hereafter we denote the
stereo signals as zL(f

′, τ ′) and zR(f
′, τ ′) for the operator’s

left and right ears, respectively, which are the STFT outputs
of the NC. This method includes two steps. In the first
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step, we estimate the amplitude spectrum of the target signal
on the basis of the MMSE criterion under a certain target
prior for each signal. Next, we derive the optimal spectral
gain that minimizes the residual interference power in terms
of the MMSE under the condition that the spectral gains
obtained from the formulation derived by Murota et al. [19] are
equivalent in both ears. This is because simple MOSIE only
provides the statistically fluctuating spectral gains for each of
ears independently, and the fluctuation of the gain function in
interaural level differences at the left and right ears cause the
deterioration in sound localization. Hereafter, we call this gain
the equi-binaural optimal spectral gain.

A. Single-Channel MOSIE

At first, we explain the case of single channel signal. This
method is based on the generalized Bayesian estimator with
automatic target prior adaptation [14]. For MOSIE, we apply
STFT to the mixture signal as the output signal of the NC.
The stereo sound is a mixture of target and interference signals
and can be expressed as

z(f ′, τ ′)=s(f ′, τ ′)+n(f ′, τ ′), (18)

where z(f ′, τ ′) is the mixture signal of the output of the NC,
s(f ′, τ ′) is the target signal, n(f ′, τ ′) is the interference signal
recorded, f is the frequency bin number, and τ is the time-
frame index. For MOSIE, the amplitude spectrum of the target
signal is estimated on the basis of the MMSE criterion under
a certain target prior. The processed signal s̃(f ′, τ ′) obtained
via MOSIE is given by

s̃(f ′, τ ′) = G(f ′, τ ′)z(f ′, τ ′), (19)

G(f ′, τ ′) =

√
ν(f, τ)

γ(f ′, τ ′)
·

(
Γ(ρ(f)+β/2)

Γ(ρ(f))

· Φ(1−β/2−ρ(f), 1,−ν(f, τ))
Φ(1−ρ(f), 1,−ν(f, τ))

)1/β

, (20)

where Γ(·) is the gamma function, Φ(a, b; k) = F 1(a, b; k)
is the confluent hypergeometric function, β is the amplitude
compression parameter, and

ν(f ′, τ ′)= γ̃(f, τ)ξ̃(f ′, τ ′)
(
1 + ξ̃(f ′, τ ′)

)−1

. (21)

Here, ξ̃(f ′, τ ′) and γ̃(f ′, τ ′) are the estimated a priori and a
posteriori SNRs, respectively, which are defined as

ξ̃(f ′, τ ′) = αγ̃(f, τ − 1)G2(f ′, τ ′)

+ (1− α)max[γ̃(f ′, τ ′)− 1, 0], (22)

γ̃(f ′, τ ′) = |z(f ′, τ ′)|2/Pñ(f), (23)

where Pñ(f) is the estimated interference power spectral
density and α is the forgetting factor. In MOSIE, the a priori
statistical model of the target signal amplitude spectrum is set
to the chi distribution

p(z) = 2ϕρ(f ′)Γ(ρ(f))−1z2ρ(f
′)−1exp(−ϕz2), (24)

where p(z) is the probability density function (p.d.f.) of signal
z in the amplitude domain, ϕ = ρ(f ′)/E{|z|2}, and ρ(f ′)
is the shape parameter with respect to the frequency bin
number f ′. Here, ρ(f ′)=1 gives a Rayleigh distribution that
corresponds to a Gaussian distribution in the time domain,
and a smaller value of ρ(f ′) corresponds to a super-Gaussian
distribution signal. In this paper, we employ the adaptive
estimation method for these parameters proposed in [20] by
assuming the stationarity of background noise.

B. Derivation of Equi-Binaural Optimal Spectral Gain

We consider a mixing model with two inputs that is recorded
by specific pairwise microphone and assume that the observed
signal contains the target signal and an interference signal.
Hereafter, the observed signal vector (outputs of the NC) in the
time-frequency domain, z(f ′, τ ′) = [zL(f

′, τ ′), zR(f
′, τ ′)]t, is

given by

z(f ′, τ ′) = h(f)s(f ′, τ ′) + n(f ′, τ ′), (25)

where h(f) = [hL(f), hR(f)]
t is the column vector of the

transfer functions between the target source and each selected
microphone, s(f ′, τ ′) is the target signal component, and
n(f ′, τ ′) = [nL(f

′, τ ′), nR(f
′, τ ′)]t is the column vector

of the interference signal that represents the residual noise
component in the output of the NC. The derivation of the
equi-binaural optimal spectral gain is described below. This
is an extended version of [21] for a generalized cost function
and can be formulated as the minimization problem of the
following error e:

e =E
[{
|hL(f)s(f

′, τ ′)|β − (G(f ′, τ ′)|zL(f ′, τ ′)|)β
}2

+
{
|hR(f)s(f

′, τ ′)|β − (G(f ′, τ ′)|zR(f ′, τ ′)|)β
}2]

,

(26)

where G(f ′, τ ′) is the equi-binaural spectral gain, which is
considered as a variable. The optimization problem based on
(26) is given by

Gopt(f
′, τ ′)

= arg min
G(f ′,τ ′)

E
[{
|hL(f)s(f

′, τ ′)|β

−{(G(f ′, τ ′)−GL(f
′, τ ′))+GL(f

′, τ ′)}β |zL(f ′, τ ′)|β
}2

+
{
(|hR(f)s(f

′, τ ′))β |−{(G(f ′, τ ′)

−GR(f
′, τ ′))+GR(f

′, τ ′)}β |zR(f ′, τ ′)|β
}2]

= arg min
G(f ′,τ ′)

E
[
{|hL(f)s(f

′, τ ′)|β − (GL(f
′, τ ′)|zL(f ′, τ ′)|)β}2

+ {|hR(f)s(f
′, τ ′)|β − (GR(f

′, τ ′)|zR(f ′, τ ′)|)β}2

+ {(Gβ(f ′, τ ′)−Gβ
L(f

′, τ ′))|zL(f ′, τ ′)|β}2

+{(Gβ(f ′, τ ′)−Gβ
R(f

′, τ ′))|zR(f ′, τ ′)|β}2 + 2C
]
, (27)

where Gopt(f
′, τ ′) is the equi-binaural optimal spectral gain

to be estimated, and GL(f
′, τ ′) and GR(f

′, τ ′) are individual
spectral gains for the L and R ears, respectively, which are
auxiliary parameters for calculating an approximate solution
of Gopt(f

′, τ ′) because the direct Bayesian estimation of
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Gopt(f
′, τ ′) is difficult. In addition, C is related to the

correlation between the estimation error and the observed
signal in each channel when we estimate the target speech
signals in the L and R ears using the parameters GL(f

′, τ ′)
and GR(f

′, τ ′), and is defined by

C = {Gβ(f ′, τ ′)−Gβ
L(f

′, τ ′)} · {(GL(f
′, τ ′)|zL(f ′, τ ′)|)β

−|hL(f
′, τ ′)s(f ′, τ ′)|β}|zL(f ′, τ ′)|β

+{Gβ(f ′, τ ′)−Gβ
R(f

′, τ ′)} · {(GR(f
′, τ ′)|zR(f ′, τ ′)|)β

− |hR(f
′, τ ′)s(f ′, τ ′)|β}|zR(f ′, τ ′)|β . (28)

We discuss the minimization of (27). First, the first and second
terms on the right-hand side correspond to the problem of
target signal estimation in each ear. These terms can be
minimized if we obtain the optimal values of GL(f

′, τ ′)
and GR(f

′, τ ′) using MOSIE. Next, C in the fifth term
on the right-hand side can be disregarded if the parameters
GL(f

′, τ ′) and GR(f
′, τ ′) provide an accurate estimate of

the target signals by approximately considering C to be
negligible. Hence, the remaining third and fourth terms, i.e.,
{(Gβ(f ′, τ ′) − Gβ

L(f
′, τ ′))|zL(f ′, τ ′)|β}2 + {(Gβ(f ′, τ ′) −

Gβ
R(f

′, τ ′))|zR(f ′, τ ′)|β}2, should be minimized. This prob-
lem can be formulated as

Gopt(f
′, τ ′)

≒ arg min
G(f ′,τ ′)

E
[
{(Gβ(f ′, τ ′)−Gβ

Lopt
(f ′, τ ′))|zL(f ′, τ ′)|β}2

+{(Gβ(f ′, τ ′)−Gβ
Ropt

(f ′, τ ′))|zR(f ′, τ ′)|β}2
]
, (29)

subject to

GLopt
(f ′, τ ′)

=arg min
GL(f ′,τ ′)

E
[
{|hL(f)s(f

′, τ ′)|β−(GL(f
′, τ ′)|zL(f ′, τ ′)|)β}2

]
,

(30)
GRopt

(f ′, τ ′)

=arg min
GR(f ′,τ ′)

E
[
{|hR(f)s(f

′, τ ′)|β−(GR(f
′, τ ′)|zR(f ′, τ ′)|)β}2

]
,

(31)

where GLopt(f
′, τ ′) and GRopt(f

′, τ ′) are the L- and R-ear
optimal spectral gains, respectively. To solve (29), we first
obtain GLopt(f

′, τ ′) and GRopt(f
′, τ ′) from MOSIE in (30)

and (31). Then by substituting them into (29), we solve the
following equation in G(f ′, τ ′):

∂e

∂G(f ′, τ ′)
= Gβ(f ′, τ ′)|zL(f ′, τ ′)|2β

−Gβ
Lopt(f

′, τ ′)|zL(f ′, τ ′)|2β

+Gβ(f ′, τ ′)|zR(f ′, τ ′)|2β

−Gβ
Ropt(f

′, τ ′)|zR(f ′, τ ′)|2β

= 0. (32)

The solution of (32) is given by

Gopt(f
′, τ ′)

=

(
Gβ

Lopt(f
′, τ ′)|zL(f ′, τ ′)|2β +Gβ

Ropt(f
′, τ ′)|zR(f ′, τ ′)|2β

|zL(f ′, τ ′)|2β + |zR(f ′, τ ′)|2β

)1/β

.

(33)

V. ESTIMATION OF SURVIVOR’S LOCATION

In the practical use of this robot, it is necessary to determine
the precise location of survivors. To achieve this objective, a
method of posture estimation for the hose-shaped rescue robot
was proposed in [7]. In contrast, to estimate the direction of the
observed voice, we have developed a new hose-shaped rescue
robot that has a pairwise (stereo) microphone array, allowing
it to use stereo sound. Using the new robot, we can hear stereo
sound processed by the speech enhancement technique using
the observed multichannel noisy signals. Therefore, we exper-
imentally confirm that the operator can perceive the direction
of a survivor’s location from the processed stereo sound. In
the evaluation experiment, we first apply a noise reduction
method combining ILRMA and the NC to the multichannel
noisy sound including the survivor’s voice arriving from a
predetermined direction and ego noise. Next, the operator
hears the processed sound and is asked to state the direction of
the survivor’s location. The correct answer rate of the operator
is taken as the evaluation value.

A. Selection of Estimated Speech Signal

In the ego noise reduction process, ILRMA cannot deter-
mine the permutation of the estimated signal and their signals
scales.

The scale ambiguity can easily be resolved by applying
a projection-back technique to the estimated signals, namely,
all the signal scales are projected onto the observation of the
reference microphone. However, we still do not know which
estimated signal mostly contains the speech components. Al-
though the selection of the estimated speech signal may be
automated by using another criterion, such as kurtosis, in
this paper, we assume that the operator can manually select
the estimated speech signal ys(t) from the output signals of
ILRMA.

B. Evaluation Method

In the evaluation, we used signals recorded by the hose-
shaped rescue robot. Figure 6 shows the positions of the
microphones and a speech source and Fig. 7 shows the
recording environment that simulated a disaster site. The
stereo processed signal that the operator hears was recorded
by microphones 1 and 2, which are attached to the front of
the robot, to which the projection-back method is applied
to adjust the scale to the observed signal at microphones
1 and 2. We recorded signals arriving from three different
directions and evaluated each signal. First, we applied ILRMA
to multichannel noisy signals that consist of a survivor’s voice
and ego noise. We found an estimated signal that includes most
of the speech components, which was used as ys(t), by em-
ploying the spectrograms and microphones chosen in advance
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Fig. 6: Position of microphones and a speech source.

Fig. 7: Recording environment.

as reference microphones. To adjust the scale to the observed
signal at microphones 1 and 2, we applied the projection-back
method to an estimated signal twice. Next, we applied the
NC for postprocessing of ILRMA to reduce the remaining
time-variant ego noise. Then, we used the other microphone
as a reference microphone, for example, we used microphone
2 as a reference microphone when applying the NC to the
estimated signal observed by microphone 1. Next, we applied
postfiltering using the equi-binaural spectral gain estimated by
MOSIE. Finally, the operator hears the stereo sound, which
consists of an estimated speech signal observed by microphone
1 as the left channel source and an estimated speech signal
observed by microphone 2 as the right channel source. In this
experiment, we use 12 signals: three unprocessed signals that
include the voice from either the left, right or front and nine
processed signals that include the voice from either the left,
right or front. To confirm that the location of the survivor can
be determined by hearing the processed sound, the operator
hears the sound with a headphone and chooses either left, right
or front. Other experimental conditions are shown in Table I.

TABLE I: Experimental conditions

Sampling frequency 16 kHz
Window length of ILRMA 2048 samples
Window shift of ILRMA STFT length/4

Number of bases 10
Number of iterations 50

Filter length of noise canceller 1600 taps
Window length of MOSIE 1024 samples
Window shift of MOSIE STFT length/4

Forgetting factor 0.96
Amplitude compression parameter 0.005

Sound source direction 0/90/180 degrees
Number of subjects 10 person

TABLE II: Accuracy rate

Direction Unprocessed ILRMA ILRMA+NC proposed method
Left 10 80 80 90

Front 70 70 90 80
Right 10 70 80 80

C. Results

We had listening test to evaluate performance of our new
proposed method. Ten subjects joined the test. Each subject
was required to answer the direction of the voice as a sound
source, left, front or right for a total 12 stimuli. Table II
shows propotion of correct answer. According to the result, the
subjects perceived the direction of the sound source correctly
by listening to the sound processed by our new method. In
particular, the proposed method can increase the accuracy rate
by 10%, compared with that of conventional ILRMA.

VI. CONCLUSION

We confirmed that an operator can perceive the direction
of a survivor’s location by applying our speech enhancement
technique to observed multichannel noisy signals recorded by
a hose-shaped rescue robot with a pairwise (stereo) micro-
phone array. According to our experimental result, the operator
could perceive the direction of a survivor’s location by hearing
the sound subjected to a noise reduction method combining
ILRMA, the NC, and MOSIE.
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