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FastMVAE2: On Improving and Accelerating the Fast
Variational Autoencoder-Based Source Separation

Algorithm for Determined Mixtures
Li Li , Member, IEEE, Hirokazu Kameoka , Senior Member, IEEE, and Shoji Makino , Life Fellow, IEEE

Abstract—This article proposes a new source model and train-
ing scheme to improve the accuracy and speed of the multichan-
nel variational autoencoder (MVAE) method. The MVAE method
is a recently proposed powerful multichannel source separation
method. It consists of pretraining a source model represented by a
conditional VAE (CVAE) and then estimating separation matrices
along with other unknown parameters so that the log-likelihood
is non-decreasing given an observed mixture signal. Although the
MVAE method has been shown to provide high source separation
performance, one drawback is the computational cost of the back-
propagation steps in the separation-matrix estimation algorithm.
To overcome this drawback, a method called “FastMVAE” was
subsequently proposed, which uses an auxiliary classifier VAE
(ACVAE) to train the source model. By using the classifier and
encoder trained in this way, the optimal parameters of the source
model can be inferred efficiently, albeit approximately, in each
step of the algorithm. However, the generalization capability of
the trained ACVAE source model was not satisfactory, which led
to poor performance in situations with unseen data. To improve
the generalization capability, this article proposes a new model
architecture (called the “ChimeraACVAE” model) and a training
scheme based on knowledge distillation. The experimental results
revealed that the proposed source model trained with the proposed
loss function achieved better source separation performance with
less computation time than FastMVAE. We also confirmed that our
methods were able to separate 18 sources with a reasonably good
accuracy.

Index Terms—Auxiliary classifier VAE, fast algorithm, know-
ledge distillation, multichannel source separation, multichannel
variational autoencoder (MVAE).

I. INTRODUCTION

B LIND source separation (BSS) is a technique for separating
observed signals recorded by a microphone array into
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individual source signals without prior information about the
sources or mixing conditions. This technique has been used in
a wide range of applications, including hearing aids, automatic
speech recognition (ASR), telecommunications systems, music
editing, and music information retrieval.

Acoustic signals are convolved with the impulse responses of
acoustic environments, and so the signal observed at a particular
position is usually given as the convolutive mixture of nearby
source signals. Although it is possible to take a time-domain ap-
proach to the BSS problem, it can be computationally expensive
since it requires directly estimating and applying demixing filters
with thousands of taps. In contrast, the time-frequency-domain
approach is advantageous in that the convolution operations
can be replaced by multiplications to achieve computationally
efficient algorithms, and it allows the flexible use of various
models for the time-frequency (TF) representations of source
signals. Independent vector analysis (IVA) [2], [3] is an example
of the time-frequency-domain approach, which makes it possi-
ble to solve frequency-wise source separation and permutation
alignment simultaneously by assuming that the magnitudes of
the frequency components originating from the same source
vary coherently over time. Multichannel nonnegative matrix
factorization (MNMF) [4], [5] and independent low-rank matrix
analysis (ILRMA) [6], [7], [8] are other examples, which employ
the concept of NMF [9] to model the TF structures of sources.
Specifically, they assume that the power spectrum of each source
signal can be approximated as the sum of a limited number
of basis spectra scaled by time-varying amplitudes. IVA can
be understood as a special case of ILRMA where only one
flat basis spectrum is used for representing each source. This
indicates that ILRMA can capture the TF structure of each
source more flexibly than IVA, and this flexibility has been
shown to be advantageous in improving the source separation
performance [7].

Recently, the success of deep neural network (DNN)-based
speech separation methods [10], [11], [12], [13], [14], [15],
[16], [17], [18], including deep clustering (DC) [11], [12] and
permutation invariant training (PIT) [13], [14], has proven that
DNNs have an excellent ability to capture and learn the structure
of spectrograms. The general idea of these methods is to train
a network that predicts a TF mask or clean signals, given
the spectral and spatial features of observed mixture signals.
Meanwhile, time-domain methods based on end-to-end training
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have also been extensively studied and have shown excellent
performance [19], [20], [21]. Some attempts [22], [23] have been
made to combine beamforming with the time-domain methods
to avoid artifacts introduced by nonlinear processing. Although
such an end-to-end approach provides reasonably good sepa-
ration performance, one drawback is that it suffers from the
limitation that the test conditions need to be similar to the
training ones, such as the number of speakers and reverberation
conditions.

There have also been some attempts to incorporate DNNs
into the BSS methods mentioned earlier [24], [25], [26],
[27], [28], [29]. Independent deeply low-rank matrix analysis
(IDLMA) [25], [30] is one such method, where each DNN
is trained using the utterances of a different speaker. After
training, the trained DNNs are used to refine the estimated power
spectra at each iteration of the source separation algorithm.
Namely, each DNN can be seen as a speaker-dependent speech
enhancement system. One drawback of IDLMA would be that
it can perform poorly in speaker-independent scenarios due
to its discriminative training scheme. Within the DNN frame-
work, deep generative models such as variational autoencoders
(VAEs) [31], [32], generative adversarial networks (GANs) [33],
and normalizing flow (NF) [34] have proven to be powerful
in source separation tasks [26], [27], [28], [29], [35], [36],
[37], [38], [39], [40], [41], [42], [43]. An attempt to employ
VAE for semi-supervised single-channel speech enhancement
was made in [27] under the name of the “VAE-NMF” method,
which uses a VAE to model each single-frame spectrum in an
utterance of a target speaker and an NMF model to express a
noise spectrogram. Several variants of this method have subse-
quently been developed, including the incorporation of loudness
gain for robust speech modeling [28], the adoption of a noise
model based on alpha-stable distribution instead of a complex
Gaussian distribution [37], and the extension to multichannel
scenarios [36], [38].

Independently, around the same time, we proposed a method
called the “multichannel variational autoencoder (MVAE)”.
This was the first to incorporate the VAE concept into the
multichannel source separation framework, and it has proven to
be very successful in supervised determined source separation
tasks. Unlike the VAE-NMF methods, the MVAE method uses a
conditional VAE (CVAE) with a fully convolutional architecture
to model the entire spectrogram of each utterance. The CVAE
is trained with the spectrograms of clean speech samples along
with the corresponding speaker ID as a conditioning class vari-
able. This is done so that the trained decoder distribution can be
used as a generative model of signals produced by all the sources
included in a given training set, where the latent space variables
and the class variables are the parameters to be estimated from
an input mixture signal. The generative model trained in this
way is called the CVAE source model. At the separation phase,
the MVAE algorithm iteratively updates the separation matrix
using the iterative projection (IP) method [44] and the under-
lying parameters of the CVAE source model using a gradient
descent method, where the gradients of the latent variables
are calculated using backpropagation. The main feature of this
optimization algorithm is that the log-likelihood is guaranteed

to be non-decreasing if the step size is carefully chosen or if a
backtracking line search [45] is applied for the backpropagation
algorithm. Furthermore, since the MVAE uses a CVAE to model
every single source and the demixing matrices are estimated
only at the separation phase, a trained CVAE source model is,
in principle, able to handle an arbitrary number of sources and
different recording conditions, which significantly differs from
discriminative methods. However, one major drawback of the
MVAE method is that the backpropagation required for each it-
eration makes the optimization algorithm very time-consuming,
which can be problematic in practice.

To address this problem, we previously proposed a fast algo-
rithm called “FastMVAE” [46], which uses an auxiliary classifier
VAE (ACVAE) [47] to model the generative distribution of
source spectrograms. In this method, the encoder and auxiliary
classifier are trained in such a way that they learn to infer the
latent space variables and class variables, respectively, given
a spectrogram. This allows us to replace the backpropagation
steps in the source separation algorithm with the forward prop-
agation of the two networks and thus significantly reduce the
computational cost. Furthermore, we showed that FastMVAE
could achieve source separation performance comparable to
the MVAE method when the training and test conditions are
sufficiently close to being consistent. However, when there is a
mismatch between the training and test conditions, due to, for
example, the presence of long reverberation or under speaker-
independent conditions, FastMVAE tends to perform worse than
the MVAE method. This may be because the encoder and classi-
fier cannot generalize well to inputs that are very different from
the training data. To stabilize the parameter inference process
under such mismatched conditions, we derived an improved up-
date rule based on the Product-of-Experts (PoE) framework [48].
However, this method requires manual selection of the optimal
weights in advance, forcing us to rely on heuristics.

FastMVAE being weak against the mismatch between the
training and test conditions may be because the model is struc-
tured in such a way that the output of the auxiliary classifier is
fed into the encoder, and so the error in the classifier output can
directly affect the encoder output. One way to avoid this would
be to assume conditional independence between the outputs of
the encoder and auxiliary classifier so that they can perform their
tasks in parallel. Instead of preparing two separate networks,
we propose merging the encoder and classifier into a single
multitask network to allow them to share information. We call
this new model the “ChimeraACVAE” source model.

Another important issue is how to train the above model to
have good generalization ability. A number of techniques have
been developed with the aim of improving the generalization
ability of DNNs. These techniques can be roughly classified into
regularization-based [49], [50], [51], [52], data augmentation-
based [53], and training strategy-based methods [54], [55],
[56]. Knowledge distillation (KD), a model compression and
acceleration technique that has been rapidly gaining attention in
recent years, is typically used to transfer knowledge of a teacher
model to a more compact student model. KD has been shown
to not only accelerate the inference process through model
compression but also provide better generalization ability to the
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compressed model. In this article, we propose adopting KD to
train the ChimeraACVAE source model. Specifically, we use
a pre-trained CVAE model as a teacher model and transfer its
knowledge to the ChimeraACVAE model by using as a criterion
the Kullback-Leibler (KL) divergence between the distributions
of the outputs of the encoder and decoder of the CVAE and
ChimeraACVAE models.

In summary, the two main contributions of this article are as
follows:

1) We propose a new network architecture that replaces the
ACVAE source model in FastMVAE, which we call the
“ChimeraACVAE” source model. It merges the encoder
and classifier into a single multitask network so that it can
handle the tasks of the encoder and classifier simultane-
ously.

2) We propose a loss function based on the KD frame-
work that allows the ChimeraACVAE source model to
acquire excellent generalization capability. We show that
the model trained in this way can improve source separa-
tion performance in both speaker-dependent and speaker-
independent conditions.

The rest of this article is structured as follows. After describing
the formulation of the determined multichannel BSS problem
and reviewing the original MVAE method in Section II, we
describe the ACVAE source model and the FastMVAE method
in Section III. In Section IV, we provide technical details of the
proposed ChimeraACVAE source model and its training strat-
egy. The effectiveness of the proposed method is demonstrated
in Section V by evaluating the source separation performance
of speaker-dependent and speaker-independent scenarios. We
conclude the article in Section VI.

II. MVAE

A. Problem Formulation

Let us consider a situation where I source signals are captured
by I microphones. We use xi(f, n) and sj(f, n) to denote the
short-time Fourier transform (STFT) coefficients of the signal
observed at the ith microphone and jth source signal, where f
and n are the frequency and time indices, respectively. If we use

x(f, n) = [x1(f, n), . . . , xI(f, n)]
T ∈ C

I , (1)

s(f, n) = [s1(f, n), . . . , sI(f, n)]
T ∈ C

I , (2)

to denote the vectors containing x1(f, n), . . . , xI(f, n) and
s1(f, n), . . . , sI(f, n), the relationship between the observed
signals and source signals can be approximated as

s(f, n) = WH(f)x(f, n), (3)

W(f) = [w1(f), . . . ,wI(f)] ∈ C
I×I , (4)

under a determined mixing condition, where WH(f) represents
the separation matrix, and (·)T and (·)H denote the transpose
and Hermitian transpose of a matrix or a vector, respectively.
The goal of BSS is to determine W = {W(f)}f solely from
the observation X = {x(f, n)}f,n. Here, the notation {Eb}b is

used as an abbreviation for {Eb | b ∈ B}, where B denotes the
set of all possible indices.

In the following, we assume that sj(f, n) independently fol-
lows a zero-mean complex proper Gaussian distribution with
variance (power spectral density) vj(f, n) = E[|sj(f, n)|2]:

p(sj(f, n)|vj(f, n)) = NC(sj(f, n)|0, vj(f, n)). (5)

This assumption is often referred to as the local Gaussian model
(LGM) [57], [58]. If sj(f, n) and sj′(f, n) are independent for
∀j �= j′, the density of s(f, n) becomes

p(s(f, n)|V(f, n)) =
∏
j

p(sj(f, n)|vj(f, n))

= NC(s(f, n)|0,V(f, n)), (6)

where V(f, n) = diag[v1(f, n), . . . , vI(f, n)]. From (3) and
(6), the density of x(f, n) is obtained as

p(x(f, n)|W(f),V(f, n))

= |WH(f)|2p(s(f, n) = WH(f)x(f, n)|V(f, n)), (7)

where |WH(f)|2 is the Jacobian of the mapping x(f, n) �→
s(f, n). Therefore, the log-likelihood of W = {W(f)}f and
V = {vj(f, n)}f,n,j , given X = {x(f, n)}f,n is expressed as

log p(X|W,V)
= 2N

∑
f

log | detWH(f)|+
∑
j

log p(Sj |V j)

c
= 2N

∑
f

log | detWH(f)|

−
∑
f,n,j

(
log vj(f, n) +

|wH
j (f)x(f, n)|2
vj(f, n)

)
, (8)

where we have used
c
= to denote equality up to constant terms

and a bold italic font to indicate a set consisting of TF elements,
namely Sj = {sj(f, n)}f,n and V j = {vj(f, n)}f,n. The log-
likelihood will be split into F frequency-wise terms if no addi-
tional constraint is imposed on vj(f, n) or W(f), implying that
there is a permutation ambiguity in the separated components
for each frequency. Thus, the separated components of different
frequency bins that originate from the same source need to be
grouped together in order to complete source separation. This
process is called permutation alignment [59], [60].

B. CVAE Source Model

Incorporating an appropriate constraint into the power spec-
trogram V j = {vj(f, n)}f,n not only helps eliminate the per-
mutation ambiguity but also provides a clue for estimatingW . In
the MVAE method, the complex spectrogram of a single source
S = {s(f, n)}f,n is modeled using a CVAE [31] conditioned
on a class variable c. Here, c is a one-hot vector consisting of C
elements, indicating to which class the separated signal belongs.
For example, speaker IDs can be used as the class category in
multispeaker separation tasks, where the entries of c will be 1
at the index of a particular speaker and 0 at all other indices.
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Since the following applies to all sources, index j will be
omitted throughout this paragraph. A CVAE consists of decoder
and encoder networks. The decoder network is designed to
produce the parameters of the distribution p∗θ(S|z, c) of data
S given a latent space variable z and a class variable c. The
encoder network is designed to generate the parameters of a
conditional distribution q∗φ(z|S, c) that approximates the exact
posterior p∗θ(z|S, c). The goal of the CVAE training is to find the
weight parameters in the encoder and decoder networks, namely
θ and φ, such that the encoder distribution q∗φ(z|S, c) becomes
consistent with the posterior p∗θ(z|S, c) ∝ p∗θ(S|z, c)p(z). Note
that the KL divergence between q∗φ(z|S, c) and p∗θ(z|S, c) is
shown to be equal to the difference between the log marginal
likelihood log p∗θ(S|c) = log

∫
z p(S|z, c)p(z) dz and its vari-

ational lower bound. Hence, minimizing the KL divergence
between q∗φ(z|S, c) and p∗θ(z|S, c) amounts to maximizing the
following variational lower bound [61]:

J = E(S,c)

[
Ez∼q∗φ(z|S,c)[log p

∗
θ(S|z, c)]

− KL[q∗φ(z|S, c)||p(z)]
]
, (9)

where we have used E(S,c)[·] to denote the sample mean of
its argument over the training examples {Sm, cm}Mm=1, and
KL[·||·] to denote the KL divergence. Although it is difficult
to obtain an analytical form of the expectation Ez∼q∗φ(z|S,c)[·] in
the first term of J , we can use a reparameterization trick [61] to
obtain a form that allows us to compute the gradient with respect
to φ using a Monte Carlo approximation. Now, q∗φ(z|S, c),
p∗θ(S|z, c), and p(z) are distributions that need to be modeled.
In the MVAE method, p(z) and q∗φ(z|S, c) are described as
Gaussian distributions as with a regular CVAE:

p(z) = N (z|0, I), (10)

q∗φ(z|S, c) = N (z|μ∗φ(S, c), diag(σ∗φ
2(S, c))), (11)

whereμ∗φ(S, c) andσ∗φ
2(S, c) are the encoder network outputs.

For stable training, the total energy of each training utterance is
normalized to 1. However, the energy of each source in a test
mixture does not necessarily equal 1. To fill this gap, a scale
factor g is additionally introduced into the decoder distribution
as a free parameter to be estimated at test time. Specifically,
we use an expression of the decoder distribution with variance
scaled by g. Hence, the decoder distribution for the complex
spectrogram S is expressed as

p∗θ(S|z, c, g) =
∏
f,n

NC(s(f, n)|0, gσ∗θ2(f, n; z, c)), (12)

whereσ∗θ
2(f, n; z, c) denotes the (f, n)th element of the decoder

network output. (12) is called the CVAE source model.
If we use the above CVAE source model to represent the

complex spectrogram of the jth signal in a mixture signal, zj ,
cj , and gj are the unknown parameters to be estimated. Since
the CVAE source model is given in the same form as the LGM
in (5) if we denote gjσ∗θ

2(f, n; zj , cj) by vj(f, n), using this as
the generative model for each source gives the log-likelihood in
the same form as (8).

C. Optimization Algorithm

The goal of the source separation algorithm in the
MVAE method is to maximize the posterior p(W,Ψ,G|X ) ∝
p(X|W,Ψ,G)p(z)p(c) with respect toW , Ψ = {zj , cj}j , and
G = {gj}j , where z is assumed to follow N (0, I), and p(c)
is the empirical distribution of the training examples {cm}m,
expressed as a multinomial distribution. Hence, the objective
function is log p(X|W,Ψ,G) + log p(z) + log p(c). A station-
ary point of this function can be found by iteratively updating
W , Ψ, and G so that the function value is guaranteed to be
non-decreasing. To updateW , we can use the IP method [44]:

wj(f)← (WH(f)Σj(f))
−1ej , (13)

wj(f)← wj(f)√
wH
j (f)Σj(f)wj(f)

, (14)

where Σj(f) =
1
N

∑
n x(f, n)x

H(f, n)/vj(f, n) and ej de-
notes the jth column of an I × I identity matrix. As for G, the
update rule

gj ← 1

FN

∑
f,n

|wH
j (f)x(f, n)|2

σ∗θ2(f, n; zj , cj)
(15)

maximizes the objective function with respect to gj when W
and Ψ are fixed. Under fixed W and G, the optimal zj and cj
that maximize the objective function can be found using the
gradient descent method. Note that cj can be updated under the
sum-to-one constraint by inserting an appropriately designed
softmax layer that outputs cj .

One important feature of VAE, in general, is its generalization
capability, namely the ability to learn the distribution of unseen
data. Thanks to this feature, the CVAE source model trained
on speech samples of sufficiently many speakers can generalize
somewhat well to the spectrograms of unknown speakers, thus
allowing the above algorithm to handle speaker-independent
scenarios reasonably well. Another advantage is that it is guaran-
teed to converge to a stationary point, making it easy to handle in
practical use. However, the downside is that the backpropagation
algorithm required for each iteration can be computationally
expensive.

III. FASTMVAE

A. ACVAE Source Model

The motivation behind the FastMVAE method is to ac-
celerate the process of updating Ψ. Under fixed W and
G, the objective function of the MVAE method is equal to
the sum of log p(zj , cj |Sj , gj) up to a constant, where Sj
is the set {wH

j (f)x(f, n)}f,n, namely the complex spectro-
gram of the signal separated from the observed signal us-
ing the current estimate of W . The idea of the FastM-
VAE method is to express this posterior as p(zj , cj |Sj , gj) =
p(zj |Sj , cj , gj)p(cj |Sj , gj) and use two trainable networks to
approximate these two conditional distributions. Once these
networks have been trained, an approximation of the maximum
point of the posterior p(zj , cj |Sj , gj) can be obtained by finding
the maximum points of the two approximate distributions.
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Fig. 1. Illustration of the ACVAE model in FastMVAE (left) and the ChimeraACVAE model in FastMVAE2 (right). We use S̃ = S/g to denote a normalized
spectrogram and omit g = 1 in encoder, decoder, and classifier distributions.

To obtain approximations of the two conditional distribu-
tions, the FastMVAE method employs the idea of ACVAE
training [47]. ACVAE is a CVAE variant that incorporates the
expectation of the mutual information [62]

I(c,S|z)
= Ec∼pD(c),S∼pθ(S|z,c),c′∼p(c|S)[log p(c

′|S)] +H(c) (16)

into the training criterion with the aim of making the decoder
output as correlated as possible with the class variable c. Here,
pD(c) is the empirical discrete distribution of the samples of c in
the training set andH(c) represents the entropy of c, which can
be regarded as a constant. Since it is difficult to express I(c,S|z)
in analytical form, rather than using it directly, ACVAE uses its
variational lower bound

L = E(S,c′),z∼q∗φ(z|S,c′)[Ec,S∼p∗θ(S|z,c)[log r
∗
ψ(c|S, g)]] (17)

defined using a variational distribution r∗ψ(c|S, g) =
Mult(c|ρ∗ψ(S/g)) for optimization, where E(S,c′)[·] is
equivalent to E(S,c)[·], Ec[·] denotes the mean of its argument
over all one-hot vectors c ∼ pD(c), which can be approximated
by a Monte Carlo approximation, and Ez∼q∗φ(z|S,c′)[·] and
ES∼p∗θ(S|z,c)[·] are approached by a Monte Carlo approximation
after reparameterization tricks. Here, Mult(c|ρ) ∝∏i ρ

ci
i

denotes a multinomial distribution, where c = [c1, . . . , cI ]
T

and ρ = [ρ1, . . . , ρI ]
T. ρ∗ψ(S/g) is a neural network that

takes S normalized by g as input and produces a probability
vector consisting of C elements that sum to 1. r∗ψ(c|S, g)
is an auxiliary classifier. Since the exact bound is obtained
when r∗ψ(c|S, g) = p(c|S, g), the trained auxiliary classifier
r∗ψ(c|S, g) is expected to be a good approximation of the
distribution p(c|S, g) of interest. ACVAE also uses the negative
cross-entropy

I = E(S,c)[log r
∗
ψ(c|S, g)] (18)

as the training criterion. Therefore, the entire training criterion
to be maximized is given by

J + λLL+ λII, (19)

where λL, λI ≥ 0 denote the regularization weights that weight
the importance of the regularization terms. The set of the net-
works trained in this way using the spectrograms of the training
utterances is called the ACVAE source model. An illustration of
ACVAE is shown on the left of Fig. 1.

Algorithm 1: FastMVAE Algorithm w/ PoE.
Require: Network parameter θ, φ, ψ trained using (19),
observed mixture signal x(f, n), iteration number L ,
weight parameter α

1: randomly initializeW , Ψ
2: for � = 1 to L do
3: for j = 1 to J do
4: yj(f, n) = wH

j (f)x(f, n)
5: (updating source model parameters)
6: initialize gj using (15)
7: normalize S̄j = {yj(f, n)/gj}f,n
8: update cj using (20)
9: update zj using (22)

10: compute σ∗j
2(f, n; zj , cj , gj = 1, θ)

11: update gj using (15)
12: compute vj(f, n) = gj · σ∗j2(f, n; zj , cj , gj =

1, θ)
13: (updating separation matrices)
14: for f = 1 to F do
15: update wj(f) by IP method with (13), (14)
16: end for
17: end for
18: end for

B. Optimization Algorithm

After ACVAE training, we achieve p(zj , cj |Sj , gj) ≈
r∗ψ(cj |Sj , gj)q∗φ(zj |Sj , cj , gj). Since the maximum points of
r∗ψ(cj |Sj , gj) and q∗φ(zj |Sj , cj , gj) can be found through the
forward passes of the auxiliary classifier and encoder, respec-
tively, we can quickly find an approximate solution to (zj , cj) =
argmaxzj ,cj p(zj , cj |Sj , gj) without resorting to gradient de-
scent updates. Specifically, cj is given as the probability vector
produced by the auxiliary classifier network:

cj ← ρ∗ψ(Sj/gj), (20)

and zj is given as the mean of the encoder distribution:

zj ← μ∗φ(Sj/gj , cj). (21)

Here, if the jth separated signal corresponds to a speaker unseen
in the training set, the elements of (20) can be interpreted
as quantities indicating how similar that speaker is to all the
speakers in the training set. If the signal of any speaker can be
assumed to be expressed as a point in the manifold spanned by
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all the speakers in the training set, our algorithm is expected to
be able to handle even mixtures of unknown speakers.

However, our preliminary experiments revealed that directly
using the mean of the encoder distribution tends to degrade
source separation performance for speakers not included in the
training set. To stabilize the inference for unknown speakers,
we previously proposed reapplying the prior p(zj) to the en-
coder output based on the PoE framework [48] to ensure that
zj will not be updated to an outlier. Namely, the prior p(zj)
is redefined as the product of two distributions with respect
to zj , i.e., argmaxzj p(zj |Sj , cj , gj)p(zj)α. Accordingly, the
modified update rule of zj is given as

zj ← Σ−1φ,j(Σ
−1
φ,j + αI)−1μ∗φ(Sj/gj , cj). (22)

Here, α is a parameter that weights the importance of the prior
p(zj) in the inference, and Σφ,j = diag(σ∗φ

2(Sj/gj , cj)). Note
that (22) reduces to the mean of the encoder distribution when
α = 0. The algorithm of the FastMVAE method is summarized
in Algorithm 1.

IV. PROPOSED: FASTMVAE2

While the FastMVAE method can significantly reduce the
computation time compared to the MVAE method, its source
separation accuracy has been confirmed to be somewhat less
than that of the MVAE method [46]. We believe that this is due
to the limitations of the generalization capabilities of the encoder
and classifier obtained from the ACVAE training. In this article,
we propose introducing a new model architecture and training
scheme to overcome these limitations rather than implementing
a heuristic solution at the inference stage.

A. ChimeraACVAE Source Model

We first describe our motivation and ideas for developing an
improved version of the ACVAE source model, which we call
the “ChimeraACVAE” source model.

1) Multitask Encoder: When performing source separation,
it is desirable that the speaker identity of each separated signal
does not change over time. This is because a change in the
identity of each separated signal means a failure in source
separation. However, constraining the identity not to change is
not an easy task if the decoder is not conditioned on c (as in a
regular VAE) since it will be trained so that z becomes an entan-
gled mixture of linguistic and speaker-identity information. In
contrast, conditioning the decoder on c is expected to promote
disentanglement between z and c so that z represents only the
linguistic information and c represents only the speaker identity.
This allows our source separation system to always ensure that
the speaker identity of each separated signal is time-invariant.
Thus, it is essential for the decoder to remain conditioned on c,
and it is the encoder that we propose to modify. Specifically, we
unify the encoder and auxiliary classifier into a single network
with two branches that output the parameters of the encoder dis-
tribution q+φ (z|S, g) = N (z|μ+

φ (S/g), diag(σ
+
φ
2(S/g))) and

those of the class distribution r+ψ (c|S, g) = Mult(c|ρ+
ψ (S/g)),

respectively. Here, the latent variable z and speaker identity c
are assumed to be conditionally independent. We believe that

Fig. 2. Network architectures of the unified encoder and decoder in the
ChimeraACVAE source model. The inputs and outputs are assumed to be
vector sequences. A spectrogram is interpreted as a sequence of spectra, with
frequency regarded as the channel dimension. “w”denotes the length of the
input sequence. “Conv” and “Deconv” denote one-dimensional convolution and
transposed convolution, respectively, where “c,” “k,” and “s” denote the channel
number, kernel size, and stride size, respectively. “LN” and “SiLU” stand for
the layer normalization and sigmoid linear unit, respectively. “mean” denotes
the operation of averaging the input sequence along the time direction, and
“softmax” denotes the operation of applying a softmax function to the input
vector. In the decoder, the “class index encoding” c is concatenated to the input
of each transposed convolutional layer along the channel direction after being
repeated along the time direction so that it has the shape compatible with the
input.

the main reason for the performance degradation in FastMVAE
under the speaker-independent condition is the cascade structure
of the classifier and encoder, where errors in the classifier di-
rectly affect the outputs of the encoder. The conditional indepen-
dence assumption in the ChimeraACVAE source model allows
us to parallelize the processes by the classifier and encoder
and prevent error propagation. Furthermore, the sharing of the
layers in the unified encoder network is expected to improve the
generalization capability through multitask learning.

2) Network Details: The original ACVAE source model is
designed to include batch normalization (BN) layers in its net-
works. However, since the computation of batch normalization
depends on the mini-batch size, the learned parameters may
be suboptimal in inference situations where the number of
sources differs from the mini-batch size during training. To avoid
inconsistencies in computation during training and inference,
we replace batch normalization [55] with layer normalization
(LN) [56]. In addition, we use a sigmoid linear unit (SiLU) [63]
instead of a gated linear unit (GLU) [64] to reduce model size.
SiLU, also known as the swish activation function, is a self-gated
activation function, which can be expressed as

Ol = (Ol−1 ∗Wl + bl)⊗ σ(Ol−1 ∗Wl + bl) (23)

when applied to a convolution layer. Here, Wl and bl are weight
and bias parameters of the lth layer, and Ol and Ol−1 denote
the output and input of the lth layer, respectively. ⊗ denotes
element-wise multiplication, and σ(·) is the sigmoid function.
Both SiLU and GLU are data-driven gates, which control the
information passed in the hierarchy. Unlike GLU, where the
linear and gate functions are parameterized separately, SiLU
uses the same parameters to represent them. This halves the
number of parameters in a single layer.

An illustration of the proposed ChimeraACVAE source model
is shown on the right in Fig. 1, and the network architecture
used to configure the model is shown in Fig. 2. Table I shows
the number of the parameters of the CVAE, ACVAE, and
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TABLE I
NUMBER OF PARAMETERS OF CVAE, ACVAE, AND CHIMERAACVAE MODEL

USED IN THE EXPERIMENTS

ChimeraACVAE models used in the following experiments.
Note that the number of parameters depends on the number
of speakers in the training dataset. As can be seen from this
comparison, the ChimeraACVAE source model with the above
modifications has reduced the number of parameters to about
40% of the original ACVAE source model, which is even smaller
than that in the CVAE model used in the MVAE method.

B. Training Criterion Based on KD

Since the latent variable z no longer depends on c, we must
first rewrite the training loss of ACVAE, i.e., (19), by replacing
q∗φ(z|S, c)with q+φ (z|S). Note that we omit g in this subsection,
assuming that g is set to 1 and normalized spectrograms are used
during training. Thus, the reformulated training criteria are given
as

J =ES,c

[
Ez∼q+φ (z|S)[log p

+
θ (S|z, c)]−KL[q+φ (z|S)||p(z)]

]
,

(24)

L = ES′, z∼q+φ (z|S′)
[
Ec,S∼p+θ (S|z,c)[log r

+
ψ (c|S)]

]
, (25)

I = ES,c[log r
+
ψ (c|S)]. (26)

Here, ES′ [·] in (25) denote the mean of the arguments over all
spectrograms S′ ∼ pD(S) in the training dataset. The super-
script + is used to distinguish the networks in the ChimeraAC-
VAE model from those in the original ACVAE model super-
scripted with ∗.

Unlike in the training phase, where the class label c is known
and given, in the separation phase, the spectrogram S needs
to be constructed using the estimated z and c. Therefore, it is
reasonable to simulate this situation in the training phase as well.
Namely, we consider not only the reconstruction error defined
using the given label c but also the reconstruction error defined
using the estimated c ∼ r+ψ (c|S). Thus, we propose including

J ′ = ES,z∼q+φ (z|S),c∼r+ψ (c|S)[log p
+
θ (S|z, c)], (27)

L′ = ES′, z∼q+φ (z|S′),c∼r+ψ (c|S′)[ES∼p+θ (S|z,c)[log r
+
ψ (c|S)]],

(28)

in the training objective. Here, it should be noted that bothJ ′ and
L′ involve expectations over c ∼ r+ψ (c|S′). However, there is
currently no known reparameterization trick that can be applied
to random variables that follow multinomial distributions.

Instead, we use the Gumbel-Softmax (GS) distribution as an
approximation to the multinomial distribution, which allows the
use of the reparameterization trick [65], [66]. The GS distribu-
tion of a continuous multivariate variable k = [k1, . . . , kI]

T is

defined as

pρ,τ (k) = Γ(I)τ I−1
(

I∑
i=1

ρi/k
τ
i

)−I I∏
i=1

(
ρi/k

τ+1
i

)
. (29)

This expression is derived analytically as a distribution that is
followed by the variables

ki =
exp((log ρi + gi)/τ)∑I
i′=1 exp((log ρi + gi)/τ)

, (30)

wheregi, i = 1, . . . , I are Gumbel samples drawn independently
and identically from Gumbel(0, 1), ρ is the class probability
vector produced by the classifier, and τ is called the softmax
temperature. Here, it is important to note that (29) is shown to
become identical to r+ψ (k|S′) as τ approaches 0. By replacing

r+ψ (k|S′) with (27), (28) and (29) can be approximated as

J ′GS = ES,z∼q+φ (z|S),k∼pρ̂,τ (k)
[
log p+θ (S|z,k)

]
, (31)

L′GS = ES′,z∼q+φ (z|S′),k∼pρ̂,τ (k),S∼p+θ (S|z,k)
[
log r+ψ (k|S)

]
.

(32)

Unlike the original expressions, these expressions allow the
computations of the derivatives with respect to ψ using the
reparameterization trick.

With the reduced number of model parameters, the challenge
is how to make the ChimeraACVAE model have a high gener-
alization capability. To this end, we further introduce training
criteria derived based on the KD [51] using a pre-trained CVAE
model as the teacher model. KD, also known as teacher-student
learning, is a technique to transfer the knowledge from a teacher
model to a student model, originally proposed for model com-
pression [51] and later shown to improve the generalization
capability of the student model [67]. There are three types of
knowledge that can be transferred between models: response-
based knowledge, feature-based knowledge, and relation-based
knowledge. These refer to the knowledge of the last output layer,
the knowledge of each output layer, and the knowledge of the
relationship between layers, respectively. Since the networks in
both the teacher and student models are reasonably shallow, we
consider response-based KD to be sufficient, as it requires a
minimal increase in training cost.

Specifically, we transfer the knowledge of the distributions
of the latent variable q∗φ(z|S, c) and the complex spectrograms
p∗θ(S|z, c) learned by the CVAE model into the ChimeraACVAE
model by using these distributions as priors. We use the KL
divergences to measure the differences between the distributions
estimated by a student model and the pre-trained teacher model
such that

Kz = ES,c

[
KL[q∗φ(z|S, c)||q+φ (z|S)]

]
, (33)

KS = ES,c,z∗∼q∗φ(z|S,c),z+∼q+φ (z|S)[
KL[p∗θ(S|z∗, c)||p+θ (S|z+, c)]

]
, (34)

K′S = ES,c,z∗∼q∗φ(z|S,c),z+∼q+φ (z|S),k∼pρ̂,τ (k)[
KL[p∗θ(S|z∗, c)||p+θ (S|z+,k)]

]
. (35)
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Fig. 3. Illustration of the response-based KD from a pre-trained CVAE source
model to the ChimeraACVAE source model. We use S̃ = S/g to denote a
normalized spectrogram. Note that g = 1 is omitted from the expressions of the
encoder, decoder, and classifier distributions owing to space limitations.

Here, (35) is a criterion that measures the difference between
the teacher distribution and decoder distribution computed us-
ing the GS distribution. An illustration of KD for training the
ChimeraACVAE model is shown in Fig. 3.

The total training criterion of the ChimeraACVAE is a
weighted linear combination of the above-mentioned criteria:

J + λLL+ λII + λJ ′J ′GS + λL′L′GS

− λKz
Kz − λKS

KS − λK′SK′S . (36)

Here, λ∗ denotes a nonnegative parameter that weighs the im-
portance of that term.

With the trained ChimeraACVAE source model, we can use
the same procedure as Algorithm 1 to perform source separation.
We call it FastMVAE2 1 to distinguish it from the method using
the ACVAE source model. Note that in FastMVAE2, the PoE-
based update rule is no longer required thanks to the improved
generalization capability, but of course, it can be used in addition.

V. EXPERIMENTAL EVALUATIONS

To evaluate the effectiveness of the proposed training proce-
dure, we compare the source separation performance in speaker-
dependent and speaker-independent situations.

A. Datasets

For the speaker-dependent source separation experiment, we
used speech utterances of two male speakers (SM1, SM2) and
two female speakers (SF1, SF2) excerpted from the Voice Con-
version Challenge (VCC) 2018 dataset [68]. The audio files
for each speaker were about seven minutes long and manually
segmented into 116 short sentences, where 81 and 35 sentences
(about five and two minutes long, respectively) served as training
and test sets, respectively. We used two-channel mixture signals
of two sources as the test data, which were synthesized using

1Code: https://github.com/lili-0805/mvae-ss

simulated room impulse responses (RIRs) generated using the
image method [69] and real RIRs measured in an anechoic
room (ANE) and an echo room (E2A). The reverberation times
(RT60) [70] of the simulated RIRs were set at 78 and 351 ms,
which were controlled by setting the reflection coefficient of the
walls at 0.20 and 0.80, respectively. For the measured RIRs, we
used the data included in the RWCP Sound Scene Database in
Real Acoustic Environments [71]. The RT60 of ANE and E2A
were 173 and 225 ms, respectively. The test data included four
pairs of speakers, i.e., SF1 + SF2, SF1 + SM1, SM1 + SM2, and
SF2 + SM2. For each speaker pair, we generated ten mixture
signals. Hence, there were a total of 40 test signals for each
reverberation condition, each of which was about four to seven
seconds long.

The datasets for the speaker-independent experiment were
generated in the same way by using the Wall Street Journal
(WSJ0) corpus [72]. All the utterances in the WSJ0 folder
si_tr_s (around 25 hours) were used as the training set,
which consists of 101 speakers in total. A test set was created
by randomly mixing two different speakers selected from the
WSJ0 folders si_dt_05 and si_et_05, where the number of
speakers was 18. We generated test data using simulated RIRs
with RT60 = 78 ms and RT60 = 351 ms, where 100 mixture
signals were generated under each reverberation condition. All
the speech signals were resampled at 16 kHz. The STFT and
inverse STFT were calculated by using a Hamming window
with a length of 128 ms and half overlap.

B. Experimental Settings

We chose ILRMA [7], the MVAE method [26]2, and the Fast-
MVAE method [46] as the baseline methods for both the speaker-
dependent and speaker-independent cases, and IDLMA [30]
as another baseline method only for the speaker-dependent
scenario. For all the methods, the parameter optimization al-
gorithms were run for 60 iterations, and the separation matrix
W(f) was initialized with an identity matrix.

We set the basis number of ILRMA at 2, which is the
optimal setting for speech separation. For IDLMA, we used
the same network architecture and training settings as those
in [30] except for the optimization algorithm, where we used
Adam [73] instead of Adadelta [74]. Note that, unlike other
methods where speaker information is estimated, IDLMA re-
quires speaker information in order to properly select the cor-
responding pre-trained network. The network architectures for
the CVAE and ACVAE source models were the same as those
used in [46], where the encoder consisted of 2 convolutional
layers using GLU following a regular convolutional layer, the
decoder consisted of 2 transposed convolutional layers using
GLU following a regular transposed convolutional layer, and
the classifier consisted of 3 convolutional layers using GLU
following a regular convolutional layer. All the GLU layers used
batch normalization to stabilize the training. Adam was used to
train the networks and estimate zj and cj in the MVAE method.
In the training of ChimeraACVAE, the weight parameters were

2Code: https://github.com/lili-0805/MVAE
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TABLE II
EVALUATED MODELS AND CORRESPONDING TRAINING CRITERIA, WHICH ARE

WEIGHTED LINEAR COMBINATIONS OF THE EQUATIONS

TABLE III
SDR [DB], SIR [DB], SAR [DB], PESQ, AND STOI ACHIEVED BY USING

CHIMERAACVAE SOURCE MODEL TRAINED WITH DIFFERENT

LOSS FUNCTIONS

empirically set with the KD criterionKz as 10 and the rest as 1.
The temperature τ for the GS distribution was set at 1.

We calculated the source-to-distortions ratio (SDR), source-
to-interferences ratio (SIR), and sources-to-artifacts ratio
(SAR) [75] to evaluate the source separation performance, and
used perceptual evaluation of speech quality (PESQ)3 [76] and
short-time objective intelligibility (STOI)4 [77] to ascertain the
speech quality and intelligibility of the separated waveforms.

C. Multi-Speaker Separation Performance

We first investigated the effectiveness of each training cri-
terion proposed in Subsection IV-B in training the proposed
ChimeraACVAE source model. The correspondence between
the models and their training criteria are shown in Table II.
Table III shows the results, which were calculated by averaging
over the entire dataset, including multiple reverberation condi-
tions. The results show that it is effective to further exploit the
reconstruction loss and classification loss of the spectrograms
reconstructed with the estimated class label in the speaker-
dependent scenario, where small amounts of training data were
available. Comparing the models trained without KD (1st and
2nd rows) with that trained with KD (3th to 5th rows), we found
an improvement in SDR of about 2.6 dB in speaker-dependent

3Code: https://github.com/vBaiCai/python-pesq
4Code: https://github.com/mpariente/pystoi

TABLE IV
COMPARISON OF SDR [DB], SIR [DB], SAR [DB], PESQ, AND STOI AMONG

COMPACT FASTMVAE, FASTMVAE, AND FASTMVAE2 WITH THE OPTIMAL

PARAMETER SETTINGS

TABLE V
COMPARISON OF SDR [DB], SIR [DB], SAR [DB], PESQ, AND STOI BETWEEN

FASTMVAE2 AND BASELINE METHODS WITH THE OPTIMAL

PARAMETER SETTINGS

situations and more than 1 dB in speaker-independent ones,
which confirmed that KD could significantly improve source
separation performance. In particular, knowledge transfer of
the distribution of the latent variable z effectively stabilized
the inference accuracy even for unseen speakers. A further
improvement was achieved in the speaker-independent setting
by transferring knowledge between distributions of generated
complex spectrograms, but no improvement was seen in the
speaker-dependent setting.

In Table IV, we show a comparison of source separation per-
formance between the FastMVAE and FastMVAE2 methods. To
demonstrate the effectiveness of the proposed training criterion,
we trained an ACVAE with the architecture that respectively
replaces BN and GLU with LN and SiLU, which is referred to as
“compact FastMVAE”. The results of FastMVAE and compact
FastMVAE indicate that the replacement of the normalization
method and nonlinear activation did not lead to an improvement
in the source separation performance. Therefore, the perfor-
mance improvement by FastMVAE2 can be attributed mainly
to the proposed training criterion. The FastMVAE2 method ob-
tained the highest scores in terms of all the criteria. Particularly,
FastMVAE2 achieved an SDR improvement of about 6.6 and
2.6 dB from the FastMVAE without and with PoE, respec-
tively. These results indicated that the ChimeraACVAE source
model had good generalization to unseen data, which made
the FastMVAE2 method able to handle speaker-independent
scenarios without the heuristic inference method. Table V shows
the average scores achieved by each method with their optimal
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Fig. 4. Configuration of sources and microphone array, where red points
represent the first microphone and source.

TABLE VI
LENGTHS [SEC] OF MIXTURE SIGNALS IN EACH CASE

TABLE VII
AVERAGE INFERENCE TIME [SEC] OF MVAE WITH GPU

parameter settings. The proposed method significantly outper-
formed ILRMA and the FastMVAE method and narrowed the
performance gap with the MVAE method.

D. Comparison of Computational Time and Performance in
Situations With More Sources and Channels

In this subsection, we investigate the computational time of
each method. We conducted speaker-independent experiments
with more sources and channels and compared the performance
and computation time of each method for each update iteration
and overall processing time.

As in the above speaker-independent experiment, the simu-
lated RIRs in the {2, 3, 6, 9, 12, 15, 18}-channel cases were gen-
erated using the image method [69] with the reflection coefficient
of the walls set at 0.20. The details of the room configuration and
microphone array are shown in Fig. 4. In each case, more sound
sources and microphones were added and placed in the order of
increasing numbers. Speech utterances were randomly selected
from the WSJ0 folders si_dt_05 and si_et_05. We generated
10 samples for each case. The minimum, maximum, and average
lengths of the mixture signals are shown in Table VI. The average
SDR of the generated mixture signals for each case is shown in
the first row of Table VIII. All algorithms were processed using

Fig. 5. Average inference time [sec] of each iteration (upper) and overall
processing (bottom).

an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz and a Tesla
V100 GPU. Other experimental settings were the same as those
in the above speaker-independent experiment.

The inference times of ILRMA, FastMVAE, and FastMVAE2
are shown in Fig. 5, and those of MVAE with a GPU are shown in
Table VII as a reference. To ensure a fair comparison, we updated
the basis and activation matrices for all sources simultaneously
in ILRMA, which is different from the widely used open source.
We also used Numpy and Scipy with the MKL backend for
consistency with PyTorch. Comparing the computation times
in the CPU, we found that the FastMVAE2 method used less
time than the FastMVAE method but more time than ILRMA.
The average SDR scores obtained by each method are shown in
Table VIII. The proposed FastMVAE2 outperformed ILRMA
and the FastMVAE without PoE and even outperformed the
MVAE method in the 2-source case, demonstrating the effec-
tiveness of the proposed ChimeraACVAE source model. Note
that although the performance of ILRMA was superior to the
proposed method in the cases of 3 and 6 sources, this might
change with different initialization of the basis and activation
matrices of the NMF. On the other hand, the performance of
the proposed method is independent of the initialization. We
show an example of the magnitude spectrograms of separated
signals obtained by ILRMA, MVAE, and FastMVAE2 with their
corresponding ground truth signals in Fig. 6.5 We found that
although the MVAE and FastMVAE2 methods suffered from
the phenomenon called block permutation [78], [79], in which
the permutations in different frequency blocks are inconsistent,
the deep generative model-based source models improved the
estimation accuracy in the low-frequency band (0–2 kHz), which
resulted in a more remarkable SDR improvement compared with
ILRMA.

5Audio samples are available at http://www.kecl.ntt.co.jp/people/kameoka.
hirokazu/Demos/mvae-ss/index.html
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Fig. 6. Magnitude spectrograms of ground truth signals (first column) and separated signals obtained by ILRMA (second column), MVAE (third column), and
FastMVAE2 (fourth column) in a nine-source case. SDR of input mixture signal with respect to each speaker is shown in the top of figures in first column and
SDR improvement achieved by each method is shown in the top of each figure in second to fourth. The x and y axes of each figure denote time [sec] and frequency
[kHz], respectively. Audio samples are available at http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/mvae-ss/index.html.
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TABLE VIII
COMPARISON OF SDR [DB] BETWEEN FASTMVAE2 AND BASELINE METHODS WITH THE OPTIMAL PARAMETER SETTINGS IN SITUATIONS WITH DIFFERENT

NUMBERS OF SOURCES AND CHANNELS. VALUES IN PARENTHESES INDICATE THE IMPROVEMENT OVER UNPROCESSED

E. Spatialized-WSJ0-2mix Benchmark

In this subsection, we evaluate the proposed FastMVAE2 in
the spatialized WSJ0-2mix benchmark [18], which is widely
used for evaluating the recent DNN-based methods. There are
20,000 (∼30 h), 5,000 (∼10 h), and 3000 (∼5 h) utterances in
the training, validation, and test sets. The training and validation
mixtures were generated from data in si_tr_s folder, and
the test mixtures were generated from data in si_dt_05 and
si_et_05 folders. Therefore, the speaker-independent settings
mentioned in the above experiments are still valid. RIR used for
every utterance was simulated with a random configuration, in-
cluding room characteristics, speaker locations, and microphone
geometry. RT60 for the reverberant case was randomly selected
from 200 to 600 ms.

We compared FastMVAE2 with 1) oracle ideal binary mask
(IBM), 2) oracle ideal ratio mask (IRM), 3) oracle mask-based
minimum variance distortionless response (MVDR) beam-
former [80], 4) oracle signal-based MVDR, 5) time-domain
audio separation network (TasNet) [19], 6) multichannel Tas-
Net [23], and 7) Beam-TasNet [23]. The oracle IBM and IRM
were obtained using the first channel of the spatialized clean
sources and applied to the first channel of observed mixture
signals. The difference between the oracle mask-based and
signal-based MVDR was the signal used for computing spatial
covariance matrices, where the former used the multichannel
IRM of each source and the latter directly used the clean rever-
berant speech of each source. We investigated window lengths of
128 ms and 512 ms. Settings for TasNet, multichannel TasNet,
and Beam-TasNet are available in [23] 6. One important factor
here is the window length. Beam-TasNet used a length of 512 ms
to meet the instantaneous mixture model for reverberant signals,
while the proposed method used 128 ms since the motivation of
the FastMVAE2 is to bridge the high performance of MVAE and
real-time applications with low latency.

We first show the results of the spatialized anechoic WSJ0-
2mix dataset in Table IX. With the anechoic setup, beamform-
ing algorithms achieved higher performance than mask-based
methods. From these results, we confirmed that the MVAE and
proposed FastMVAE2 achieved even better performance than
the oracle mask-based MVDR beamformer, indicating the effec-
tiveness of these two methods when the instantaneous mixture
model assumption is satisfied. Next, we show the results of the
spatialized reverberant WSJ0-2mix dataset in Table X. Note

6We used the test dataset and evaluation script provided by the authors of [23].

TABLE IX
COMPARISON OF SDR [DB] FOR SPATIALIZED ANECHOIC WSJ0-2MIX DATASET.

“1CH” AND “2CH” INDICATE THE NUMBER OF CHANNELS USED FOR

PROCESSING

TABLE X
COMPARISON OF SDR [DB] FOR SPATIALIZED REVERBERANT WSJ0-2MIX

DATASET. “1CH” AND “2CH” INDICATE THE NUMBER OF CHANNELS USED FOR

PROCESSING

that SDRs of 8.9 dB and 10.05 dB have been reported in the
literature on multichannel deep clustering [18] and 8-channel
BLSTM MVDR [81], respectively. It should be noted, however,
that these results were obtained on different datasets and under
different conditions and, therefore, cannot be directly compared
to the present results. The performance of the MVAE and
FastMVAE2 degraded significantly due to reverberations. The
main reason was the instantaneous mixture model assumption,
which was not satisfied anymore with heavy reverberation and
short window length. We found that even the performance of
oracle MVDRs degraded significantly when the window length
became shorter. Two promising approaches can be considered
to deal with this problem, including using longer window length
and performing separation along with dereverberation [40], [82],
[83]. It is straightforward that longer window length helps deal
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with heavy reverberant conditions, which has also been con-
firmed from the results of oracle MVDRs with longer window
lengths and Beam-TasNet. However, a longer window length
is undesirable and should be avoided in real-time applications
because it increases algorithmic latency. Therefore, we consider
the second approach, performing separation and dereverberation
simultaneously, as one direction of our future works to overcome
this limitation of the FastMVAE2 method. Another possibility
that FastMVAE2 is not robust to reverberation is that it uses
dry source signals rather than reverberant signals for the source
model training. This mismatch between training and test can
have adverse effects in test conditions with long reverberation,
which caused a different trend compared to the results between
FastMVAE2 and ILRMA in the previous experiment. This can
be mitigated by training the ChimeraACVAE source model with
additional reverberant signals, which is another direction for
future work.

VI. CONCLUSION

In this article, we proposed an improved ACVAE source
model named the “ChimeraACVAE” source model for the fast
algorithm of the MVAE method, which we call “FastMVAE2”.
ChimeraACVAE is a more compact source model consisting of a
unified encoder and classifier network, and a decoder, which are
composed of fully convolutional layers with layer normalization
and a SiLU activation function. The KD framework was applied
to train the ChimeraACVAE source model to improve the gen-
eralization capability to unseen data. The experimental results
demonstrated that the FastMVAE2 method achieved signifi-
cant performance improvement in both speaker-dependent and
speaker-independent multispeaker separation tasks, approach-
ing the performance of the MVAE method. Moreover, the pro-
posed method significantly reduced the model size and improved
the computational efficiency.
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