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ABSTRACT This paper proposes a fast optimization algorithm for the multichannel variational autoen-
coder (MVAE) method, a recently proposed powerful multichannel source separation technique. The MVAE
method can achieve good source separation performance thanks to a convergence-guaranteed optimization
algorithm and the idea of jointly performing multi-speaker separation and speaker identification. However,
one drawback is the high computational cost of the optimization algorithm. To overcome this drawback,
this paper proposes using an auxiliary classifier VAE, an information-theoretic extension of the conditional
VAE (CVAE), to train the generative model of the source spectrograms and using it to efficiently update
the parameters of the source spectrogram models at each iteration of the source separation algorithm. We
call the proposed algorithm ‘‘FastMVAE’’ (or fMVAE for short). Experimental evaluations revealed that
the proposed fast algorithm can achieve high source separation performance in both speaker-dependent and
speaker-independent scenarios while significantly reducing the computational time compared to the original
MVAE method by more than 90% on both GPU and CPU. However, there is still room for improvement of
about 3 dB compared to the original MVAE method.

INDEX TERMS Multichannel source separation, multichannel variational autoencoder (MVAE) method,
FastMVAE algorithm, auxiliary classifier VAE.

I. INTRODUCTION
Blind source separation (BSS), a technique for separating out
individual source signals from microphone array inputs with-
out any information about the sources or array geometry, has a
wide range of applications, including hearing aids, automatic
speech recognition, music editing, and music information
retrieval.

In BSS, the frequency-domain approach is usually pre-
ferred since it enables a fast implementation compared
with the time-domain approach. It is also notable in that
it provides the flexibility of allowing us to utilize various
models for the time-frequency (TF) representations of source
signals. One example of this approach involves independent
vector analysis (IVA) [1], [2], which achieves frequency-wise
source separation and permutation alignment simultaneously
by assuming the magnitudes of the frequency components
originating from the same source vary coherently over time.
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Multichannel extensions of non-negative matrix factorization
(NMF), e.g., multichannel NMF (MNMF) [3], [4] and inde-
pendent low-rankmatrix analysis (ILRMA) [5]–[7], adopt the
NMF concept for source spectrogram modeling in order to
make use of the spectro-temporal structure underlying each
source as a clue to separation. Specifically, the power spectro-
gram of each source signal is approximated as the linear sum
of a limited number of basis spectra scaled by time-varying
amplitudes. Owing to the fact that ILRMA reduces to IVA
when it has only one flat basis spectrum, it can be seen
that ILRMA has more flexibility than IVA in capturing the
spectro-temporal structure in each source [6]. Each of these
methods is designed to solve an inverse problem of estimating
source signals based on a generativemodel ofmixture signals.
In this sense, these methods are categorized as a generative
approach.

Meanwhile, given the recent advances achieved by deep
neural network (DNN)-based speaker separation methods,
including deep clustering (DC) [8], [9] and permutation
invariant training (PIT) [10], [11], a discriminative approach
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has recently proved powerful in monaural source separation
tasks, including both speaker-dependent and -independent
scenarios [12]–[15]. The general idea is to train a DNN that
predicts TF masks or TF embeddings from a given mixture
signal based on spectro-temporal features. When multiple
microphones are available, spatial information can be uti-
lized to improve separation performance [16]. Although these
methods can achieve reasonably good separation, the TF
masking process can cause unwanted distortion or musical
noise in the separated speech. To avoid distortion and arti-
ficial noise and fully exploit the benefits of multichannel
inputs, some efforts have been made to integrate DNNs into
traditional microphone array processing frameworks such as
beamforming [17], [18].

The success of these single-channel DNN-based meth-
ods attests to the excellent ability of DNNs to capture and
learn the structure of spectrograms. Recently, some attempts
have also been made to incorporate DNNs into the genera-
tive approach mentioned earlier [19]–[23]. As an example,
a multichannel source separation method using a conditional
variational autoencoder (multichannel VAE or MVAE for
short) [21] has been proposed with notable success in super-
vised determined source separation tasks. With the MVAE
method, a conditional VAE (CVAE) [24] is trained using
the spectrograms of clean speech samples along with the
corresponding speaker ID as a conditioning class variable.
This is done so that the trained decoder distribution can be
used as a generative model of signals produced by all the
sources included in a given training set, where the latent
space variables and the class variables are the parameters to
be estimated from an input mixture signal. This generative
model is called the CVAE source model. At the separation
phase, the MVAE algorithm iteratively updates the demixing
matrix using the iterative projection (IP) method [25] and the
underlying parameters of the CVAE sourcemodel using a gra-
dient descent method, where the gradients of the parameters
are computed by backpropagation. The separated signals can
then be obtained by applying the estimated demixing matrix
to the observed mixture signals. One important feature of this
method is that it is designed to jointly perform multi-speaker
separation and speaker identification.1 This is particularly
reasonable since these two tasks are interdependent in the
sense that the solution to one task can help find the solution
to the other task. Another advantage worth noting is that by
using a carefully chosen step size or applying a backtracking
line search, the model parameters can be updated so as not to
decrease the log-likelihood at each iteration of the algorithm.
However, one downside is the high computational cost of the
backpropagation process involved in each iteration.

To address this drawback, this paper proposes an
accelerated version of the MVAE algorithm called the ‘‘Fast-
MVAE (or fMVAE)’’ algorithm. The idea is to use an

1When applied to other tasks such as music source separation and speech
enhancement, it should be rephrased as musical instrument identification and
speech/noise classification, respectively.

auxiliary classifier VAE (ACVAE) [26], an information-
theoretic extension of a CVAE, to pretrain the generative
distribution of source spectrograms. An ACVAE consists of
decoder, encoder, and classifier networks. These three net-
works are trained simultaneously so that the decoder can be
used as a generative model of spectrograms conditioned on
a speaker ID, and the encoder and classifier can be used to
infer the latent variables characterizing the generative model
and the speaker ID from a spectrogram input. Since the back-
propagation process involved in the originalMVAE algorithm
can be replaced with the forward propagation of the trained
encoder and classifier networks, the entire algorithm can be
made extremely efficient. It should be noted that this paper is
an extended full-paper version of our conference paper [27].
The additional contributions in comparison to [27] are as
follows:
• To stabilize the parameter inference process of the
fMVAE algorithm, especially in speaker-independent
conditions, we propose an improved version of the fast
algorithm based on a Product-of-Experts (PoE) frame-
work [28] and evaluate the impact of different hyperpa-
rameter settings.

• Wedemonstrate the capability of theMVAE and fMVAE
algorithms to handle speaker-independent scenarios by
sufficiently increasing the variety of speakers and the
number of samples in the training dataset.

The rest of this paper is structured as follows. After
describing the formulation of the determined multichannel
BSS problem and the MVAEmethod in Section II, we review
related work in Section III. In Section IV, we present the
core idea of the fMVAE algorithm along with the ACVAE
concept and describe the details of the proposed algorithm.
We demonstrate the effectiveness of the proposed method
in both speaker-dependent and speaker-independent source
separation tasks in Section V. Finally, we conclude the paper
in Section VI.

II. MVAE METHOD
A. PROBLEM FORMULATION
Let us consider a determined situation where I source signals
are captured by I microphones. Let xi(f , n) and sj(f , n) denote
the short-time Fourier transform (STFT) coefficients of the
signal observed at the ith microphone and the jth source sig-
nal, where f and n are the frequency and time indices, respec-
tively. We denote the vectors containing x1(f , n), . . . , xI (f , n)
and s1(f , n), . . . , sI (f , n) by

x(f , n) = [x1(f , n), . . . , xI (f , n)]T ∈ CI , (1)

s(f , n) = [s1(f , n), . . . , sI (f , n)]T ∈ CI , (2)

where (·)T denotes transpose. In a determined situation,
the relationship between observed signals and source signals
can be described as

s(f , n) = WH(f )x(f , n), (3)

W(f ) = [w1(f ), . . . ,wI (f )] ∈ CI×I , (4)
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where WH(f ) is called the demixing matrix and (·)H denotes
the Hermitian transpose. The aim of BSS methods is to
estimate W = {W(f )}f solely from the observation
X = {x(f , n)}f ,n.

In the following, we assume each source signal follows
the local Gaussian model (LGM) [29], [30]. Namely, sj(f , n)
is assumed to independently follow a zero-mean complex
proper Gaussian distribution with variance (power spectral
density) vj(f , n):

p(sj(f , n)|vj(f , n)) = NC(sj(f , n)|0, vj(f , n)), (5)

where vj(f , n) = E[|sj(f , n)|2]. If sj(f , n) and sj′ (f , n) (j 6= j′)
are independent, the density of s(f , n) becomes

p(s(f , n)|V(f , n)) =
∏
j

p(sj(f , n)|vj(f , n))

= NC(s(f , n)|0,V(f , n)), (6)

where V(f , n) = diag[v1(f , n), . . . , vI (f , n)]. From (3) and
(6), the density of x(f , n) is obtained as

p(x(f , n)|W(f ),V(f , n))

= |WH(f )|2p(s(f , n) =WH(f )x(f , n)|V(f , n)), (7)

where |WH(f )|2 is the Jacobian of the mapping x(f , n) 7→
s(f , n). Hence, the log-likelihood of the separation matri-
ces W = {W(f )}f and source model parameters V =

{vj(f , n)}f ,n,j given the observed mixture signals X =

{x(f , n)}f ,n is given by

log p(X |W,V)
= 2N

∑
f

log | detWH(f )| +
∑
j

log p(Sj|V j)

=
c 2N

∑
f

log | detWH(f )|

−

∑
f ,n,j

(
log vj(f , n)+

|wH
j (f )x(f , n)|

2

vj(f , n)

)
, (8)

where we have used =c to denote equality up to constant
terms, and a bold italic font to indicate a set consisting of TF
elements, namely, Sj = {sj(f , n)}f ,n, and V j = {vj(f , n)}f ,n.
Note that (8) will be split into frequency-wise source sepa-
ration problems if there is no additional constraint imposed
on vj(f , n). This indicates that there is a permutation ambi-
guity in the separated components for each frequency. Thus,
we usually need to group together the separated components
of different frequency bins that originate from the same
source after or during source separation. This process is called
permutation alignment.

B. CVAE MODEL
One efficient way to eliminate the permutation ambiguity is
to incorporate a constraint into vj(f , n) so that the spectral
structures of sources can be utilized as a clue to the estimation
of W . The idea of the MVAE method is to use a CVAE [24]
conditioned on a class variable c to model the complex spec-
trograms S = {s(f , n)}f ,n of source signals. Here, c is a

FIGURE 1. Illustration of CVAE used in MVAE.

one-hot vector consisting of C elements, indicating to which
class the spectrogram S belongs. For example, if we consider
speaker IDs as the class category, each element of c will be
associated with a different speaker, and c will be filled with 1
at the index of a certain speaker and with 0 everywhere else.

A VAE is a stochastic neural network model consisting
of an encoder and decoder, and a CVAE is an extended
version that allows the encoder and decoder to include a
conditioning class variable. In a CVAE, the decoder is mod-
eled as a neural network (decoder network) that produces
a set of parameters for a conditional distribution pθ (S|z, c)
of data S given a latent space variable z and a class vari-
able c, where θ denotes the network parameters. Figure 1
shows an illustration of CVAE. Computing the exact posterior
pθ (z|S, c) = pθ (S|z, c)p(z)/pθ (S|c) of z given S and c is
usually very difficult since pθ (S|c) involves an intractable
integral over z. The idea of CVAEs is to sidestep the
direct computation of this posterior by introducing another
neural network (encoder network) for approximating the
exact posterior pθ (z|S, c). As with the decoder network,
the encoder network generates a set of parameters for the
conditional distribution qφ(z|S, c), where φ denotes the net-
work parameters. The goal is to learn the parameters of
the encoder and decoder networks so that the encoder dis-
tribution qφ(z|S, c) becomes consistent with the posterior
pθ (z|S, c) ∝ pθ (S|z, c)p(z). Specifically, we train the encoder
and decoder networks so that KL[qφ(z|S, c)||pθ (z|S, c)]
is minimized given M class-labeled training samples
{Sm, cm}Mm=1. Since KL[qφ(z|S, c)||pθ (z|S, c)] = log p(S) +
KL[qφ(z|S, c||p(z))]−Ez∼qφ (z|S,c) log pθ (S|z, c), this process
amounts to minimizing

J (φ, θ) = E(S,c)∼pD(S,c)
[
KL[qφ(z|S, c)||p(z)]

−Ez∼qφ (z|S,c) log pθ (S|z, c)
]
, (9)

where E(S,c)∼pD(S,c)[·] can be approximated as the sam-
ple mean over {Sm, cm}Mm=1, and KL[·||·] denotes the
Kullback-Leibler divergence. While pD(S, c) can be approx-
imated as the empirical distribution of {Sm, cm}Mm=1,
qφ(z|S, c), pθ (S|z, c) and p(z) are distributions that need to
be modeled.

In the MVAE method, a CVAE is used to model the entire
complex spectrogram S of an utterance, conditioned on a
speaker ID vector c. p(z) and qφ(z|S, c) are described as
Gaussian distributions as with a regular CVAE:

p(z) = N (z|0, I), (10)
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Algorithm 1MVAE Algorithm
Require: Network parameter θ trained using (9), observed

mixture signal x(f , n), iteration number L
1: randomly initializeW , 9
2: optional: updateW using a BSS method
3: for ` = 1 to L do
4: for each source j of J do
5: yj(f , n) = wH

j (f )x(f , n)
6: (updating source model parameters)
7: initialize gj using (19)
8: normalization: S̄j = {yj(f , n)/gj}f ,n
9: for k = 1 to 100 do

10: update zj and cj using backpropagation
11: while keeping θ fixed
12: end for
13: calculate σ 2

j (f , n; zj, cj, gj = 1, θ)
14: update gj using (19)
15: compute vj(f , n) = gj · σ 2

j (f , n; zj, cj, gj = 1, θ)
16: (updating demixing matrices)
17: update wj(f ) using the IP method (17), (18)
18: end for
19: end for

qφ(z|S, c) = N (z|µφ(S, c), diag(σ
2
φ(S, c))),

=

∏
k

N (z(k)|µφ(k;S, c), σ 2
φ (k;S, c)), (11)

where z(k), µφ(k;S, c), and σ 2
φ (k;S, c) denote the kth ele-

ment of the latent space variable z and the encoder outputs
µφ(S, c) and σ 2

φ(S, c), respectively. pθ (S|z, c) is defined as
a zero-mean complex proper Gaussian distribution with the
same form as the LGM:

pθ (Sj|zj, cj) =
∏

f ,nNC(sj(f , n)|0, σ 2
θ (f , n; zj, cj)), (12)

where σ 2
θ (f , n; zj, cj) denotes the (f , n)th element of the

decoder output. Once the parameters θ and φ of the encoder
and decoder are trained using speaker-labeled training utter-
ances, the decoder with fixed θ can be used as a generative
model of spectrograms for each speaker at test time.

Normalizing themean and variance of each training sample
is one of the common practices in neural network training.
Similarly, in the CVAE training in the MVAE method, the
total energy of each training utterance is normalized to 1.
However, of course, the total energy of the spectrogram of
each source in a test mixture can vary from source to source
and does not necessarily equal 1. So that the generative model
can flexibly bridge this gap, a scale parameter g is addition-
ally incorporated into (12) and treated as a free parameter to
be estimated at test time. Namely, the generative model of
the complex spectrograms Sj of utterances of speaker j can
be expressed as

pθ (Sj|zj, cj, gj) =
∏

f ,n pθ (sj(f , n)|zj, cj, gj), (13)

where

pθ (sj(f , n)|zj, cj, gj) = NC(sj(f , n)|0, gjσ 2
θ (f , n; zj, cj)),

(14)

and zj, cj, and gj are the unknown parameters to be estimated.
(13) is called the CVAE source model. We can immediately
confirm that the decoder distribution in (12) corresponds to
a particular case of (13) where gj = 1. Since the CVAE
source model is given in the same form as the LGM in (5),
where vj(f , n) is given by gjσ 2

θ (f , n; zj, cj), using it as the
generative model of each source leads to the same form of
the log-likelihood as (8):

log p(X |W, 9,G)
= 2N

∑
f

log | detWH(f )| +
∑
j

log pθ (Sj|zj, cj, gj)

=
c 2N

∑
f

log | detWH(f )|

−

∑
f ,n,j

(
log gjσ 2

θ (f , n; zj, cj)+
|wH

j (f )x(f , n)|
2

gjσ 2
θ (f , n; zj, cj)

)
,

(15)

where G = {gj}j and 9 = {zj, cj}j.
Since z is assumed to follow N (z|0, I) when θ and φ are

trained, it would be reasonable to assume it as a prior distri-
bution for z also at test time. The prior p(c) is the empirical
distribution of the training examples {cm}m, expressed as a
multinomial distribution. Thus, the log-posterior

log p(X |W, 9,G; θ )+ log p(z)+ log p(c) (16)

is the objective function to be maximized with respect toW ,
9, and G. A stationary point of (16) can be found by itera-
tively updating these parameters so that (16) is guaranteed to
be non-decreasing. To updateW , the following update rules,
called the iterative projection (IP) [25], can be used:

wj ← (WH(f )6j(f ))−1ej, (17)

wj ←
wj(f )

wH
j (f )6j(f )wj(f )

, (18)

where 6j(f ) = 1
N

∑
n x(f , n)x

H(f , n)/vj(f , n) and ej denotes
the jth column of an I × I identity matrix. To update G,
the following update rule can be used:

gj←
1
FN

∑
f ,n

|wH
j (f )x(f , n)|

2

σ 2
θ (f , n; zj, cj)

. (19)

Note that (19) maximizes (16) with respect to gj when W
and 9 are fixed. While keeping W and G fixed, a gradient
descent method can be used to search for the optimal zj and
cj that maximize (16), or equivalently log pθ (Sj|zj, cj, gj) +
log p(zj)+ log p(cj) for each j in parallel, where each element
of Sj is given by sj(f , n) = wH

j (f )x(f , n). Note that estimat-
ing cj from a test mixture corresponds to identifying which
speaker is present in the mixture signal. When updating cj,
the sum-to-one constraint must be taken into account. This
is easily implemented by inserting an appropriately designed
softmax layer that outputs cj,

cj = softmax(uj), (20)
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FIGURE 2. Illustration of ACVAE used in fMVAE.

and treating uj as the parameter to be estimated instead.
The source separation algorithm of the MVAE method is
summarized in Algorithm 1. This algorithm is noteworthy
that, if it is implemented appropriately, the log-likelihood of
the model parameters is guaranteed to be non-decreasing at
each iteration.

III. RELATED WORK
A. ILRMA
Another reasonable way of constraining power spectrograms
involves employing the NMF model [31]. The NMF model
expresses vj(f , n) as a linear sum of spectral templates
bj,1(f ), . . . , bj,t (f ), . . . , bj,Tj (f ) ≥ 0 scaled by time-varying
magnitudes hj,1(n), . . . , hj,t (n), . . . , hj,Tj (n) ≥ 0:

vj(f , n) =
Tj∑
t

bj,t (f )hj,t (n). (21)

Note that a particular case where Tj = 1 and bj,t (f ) = 1 for all

j is equivalent to assuming the norm rj(n) =
√∑

f |sj(f , n)|2

follows a complex Gaussian distribution with time-varying
variance hj(n). This is analogous to the assumption in IVA
that the magnitudes of the STFT coefficients in all frequency
bands originating from the same source tend to vary coher-
ently over time [32].

The optimization algorithm of ILRMA consists of iter-
atively updating the demixing matrices W using the IP
method, the basis templates B = {bj,t (f )}f ,j,t , and the acti-
vation matrixH = {hj,t (n)}n,j,t so that (8) is guaranteed to be
non-decreasing at each iteration. To update B andH, we can
use the majorization-minimization (MM) algorithm [33]. The
MM-based update rules can be derived as

bj,t (f ) ← bj,t (f )

√∑
n |yj(f , n)|2hj,t (n)/vj(f , n)2∑

n hj,t (n)/vj(f , n)
,

hj,t (n) ← hj,t (n)

√√√√∑
f |yj(f , n)|2bj,t (f )/vj(f , n)2∑

f bj,t (f )/vj(f , n)
.

B. DNN-BASED METHODS
Some attempts have recently been made to incorporate DNNs
into the LGM-based multichannel source separation frame-
work [19], [20]. With these methods, vj(f , n) is updated at
each iteration as the output of pretrained DNNs. Independent

deeply low-rank matrix analysis (IDLMA) [20] is a method
designed to train a DNN for each source so that the jth
DNN produces spectra related to source j when noisy spectra
of the jth source are given as the input. Thus, each DNN
can be seen as a source-dependent noise reduction system.
One drawback of IDLMA is that updating vj(f , n) in this
way does not guarantee an increase in the log-likelihood.
Another drawback would be that it can perform poorly in
speaker-independent scenarios.

C. VAE-BASED METHODS
Recently, deep generative models such as VAEs and gen-
erative adversarial networks (GANs) have proved powerful
in source separation tasks [22], [23], [27], [34]–[40]. The
idea of using a VAE to model the spectrum within each
short-term framewas first proposed for single-channel speech
enhancement [22]. This method, called VAE-NMF, enables
speech enhancement in a semi-supervised manner by using
a VAE to model the spectrogram of a target speaker and an
NMF model to express unseen noise spectrograms. In this
method, theMetropolis algorithm is used to iteratively update
the latent space variable z. An extension of this model was
subsequently developed, which incorporates a loudness gain
for robust speech modeling and adopts a noise model based
on alpha-stable distributions [23], [36]. The Monte Carlo
expectation-maximization algorithms were used for estimat-
ing the model parameters.

To the best of our knowledge, the idea of incorporating
the VAE concept into the multichannel framework was first
introduced in a preprint article [41] and later published as
a journal paper [21]. Unlike the above VAE-NMF methods,
this method, namely the MVAE method, uses a CVAE with
a fully convolutional architecture to model the entire spec-
trogram of an utterance of each source. While the original
MVAE method was designed to deal with determined ane-
choic mixtures only, its modified versions have subsequently
been proposed to handle underdetermined scenarios [34] and
highly reverberant conditions [39]. Like the original version,
these two versions use gradient descent (backpropagation)
to update the source model parameters. Extensions of the
VAE-NMF methods to multichannel inputs were later devel-
oped [35], [37], [42] for application to multichannel speech
enhancement tasks. In these methods, the Markov chain
Monte Carlo (MCMC) methods [43], such as Gibbs sampling
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and the Metropolis algorithm, are used to iteratively update
the latent space variable as with the original VAE-NMF
methods.

Although these methods have been shown to perform
impressively compared with conventional NMF-based meth-
ods, the use of sampling and backpropagation to update latent
space variables can be computationally expensive. To reduce
the computational cost, we previously proposed to exploit
the pretrained encoder of a CVAE as an approximate pos-
terior estimator to infer the latent space variable z in [27].
With the same motivation, a fast algorithm for estimating the
parameters of the VAE-NMF model was later derived based
on the Bayesian inference in [38] for single-channel speech
enhancement.

IV. FMVAE ALGORITHM
A. IDEA
In this section, we describe the idea of the proposed fast
optimization algorithm for the MVAE method. Since the
process of updating the parameters of the CVAE sourcemodel
is more computationally costly than that of updating the
other parameters, our main focus is on how to accelerate this
process. When W is fixed, each element of Sj will be fixed
at sj(f , n) = wH

j (f ) x(f , n). Now, since the terms that depend
on zj and cj in (16) are given as

log pθ (Sj|zj, cj, gj)+ log p(zj)+ log p(cj)
c
= log pθ (zj, cj|Sj, gj), (22)

we would like to find zj and cj that maximize the posterior
p(zj, cj|Sj, gj) after updating W . This posterior can be fac-
torized as p(zj, cj|Sj, gj) = p(zj|Sj, cj, gj)p(cj|Sj, gj). Here,
we notice that the first factor, p(zj|Sj, cj, gj), resembles the
encoder (or inference) distribution in the CVAE in (11), with
the difference being that it is also conditioned on the scale
parameter gj. Since the total energy of each training utterance
is assumed to be normalized to 1 in the CVAE training as
mentioned earlier, gj can be thought of as a parameter that
plays the role of normalizing the total energy of an unnor-
malized input Sj to 1 at test time so that the scale of the
encoder input is ensured to be consistent with the training
utterances. Specifically, the encoder distribution that allows
for unnormalized inputs is implicitly assumed to be given as
the following expression:

qφ(z|S, c, g) = N (z|µφ(S/g, c), diag(σ
2
φ(S/g, c))),

=

∏
k

N (z(k)|µφ(k;S/g, c), σ 2
φ (k;S/g, c)),

(23)

which reduces to (11) when g = 1. Thus, we can use
the trained encoder qφ(zj|Sj, cj, gj) as an approximation of
the first factor of the posterior p(zj, cj|Sj, gj). This means
that if we could obtain the true distribution p(cj|Sj, gj) or
its approximate distribution r(cj|Sj, gj), we would be able to
find an approximation of the maximum point of the posterior

p(zj, cj|Sj, gj) by finding the maximum point of the corre-
sponding approximate distribution.

In this section, we review the concept of an auxiliary
classifier VAE (ACVAE), present how this concept can be
used to obtain r(cj|Sj, gj), and introduce the details of the
proposed optimization algorithm.

B. AUXILIARY CLASSIFIER VAE
An auxiliary classifier VAE (ACVAE) [26] is a CVAE variant,
which incorporates an information-theoretic regularization
[44] that assists inmaking the decoder outputs as correlated as
possible with the class variable c by maximizing the mutual
information between c and an output S ∼ pθ (S|z, c) from
the decoder, conditioned on z. The mutual information is
expressed as

I (c,S|z)=Ec∼pD(c),S∼pθ (S|z,c),c′∼p(c|S)[log p(c
′
|S)]+H (c),

(24)

where pD(c) is the empirical distribution of c in the training
dataset, and H (c) represents the entropy of c, which can
be considered as a constant term. Although it is difficult
to optimize I (c,S|z) directly since it requires access to the
posterior p(c|S), we can derive a variational lower bound of
the first term of I (c,S|z) by using a variational distribution
r(c|S) to approximate p(c|S):

Ec∼pD(c),S∼pθ (S|z,c),c′∼p(c|S)[log p(c
′
|S)]

= Ec∼pD(c),S∼pθ (S|z,c),c′∼p(c|S)
[
log

r(c′|S)p(c′|S)
r(c′|S)

]
= Ec∼pD(c),S∼pθ (S|z,c)

[
KL[p(c′|S)||r(c′|S)]

+Ec′∼p(c|S)[log r(c′|S)]
]

≥ Ec∼pD(c),S∼pθ (S|z,c),c′∼p(c| VecS)[log r(c
′
|S)]

= Ec∼pD(c),S∼pθ (S|z,c)[log r(c|S)], (25)

where the equality holds if and only if r(c|S) = p(c|S).
This technique of lower bounding mutual information is
known as variational information maximization [45]. The last
line of (25) follows the lemma presented in [44]. Therefore,
we can indirectly maximize I (c,S|z) by increasing the lower
bound with respect to pθ (S|z, c) and r(c|S). One way to
achieve this involves expressing the variational distribution
r(c|S) as a neural network and training it alongwith qφ(z|S, c)
and pθ (S|z, c). Specifically, r(c|S) can be expressed as a
multinomial distribution

rψ (c|S) = Mult(c|ρψ (S)). (26)

Here, Mult(c|ρ) ∝
∏

i ρ
ci
i denotes a multinomial distribution,

where c = [c1, . . . , cI ]T and ρ = [ρ1, . . . , ρI ]T. ρψ (S)
denotes a neural network that takes S as an input and produces
a probability vector consisting of C elements. (26) is called
an auxiliary classifier.
Therefore, the regularization term that we would like to

maximize over the training samples with respect to φ, θ , and
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FIGURE 3. Flowchart of fMVAE for I = 2 case.

ψ becomes

L(φ, θ, ψ) = E(S,c)∼pD(S,c),qφ (z|S,c)[

Ec∼pD(c),S∼pθ (S|z,c)[log rψ (c|S)]], (27)

where rψ (c|S) must satisfy the sum-to-one constraint. With
the regularization term (27), the auxiliary classifier is trained
using only the reconstructed spectrograms. Since we can also
use the spectrograms of real speech to train the auxiliary
classifier, we can further use the cross-entropy

I(ψ) = E(S,c)∼pD(S,c)[log rψ (c|S)] (28)

as the training criterion. The entire training criterion is thus
given by

J (φ, θ)− λLL(φ, θ, ψ)− λII(ψ), (29)

where λL ≥ 0 and λI ≥ 0 are the parameters weighing
the importance of the regularization terms. Figure 2 shows
an illustration of ACVAE.

C. FAST ALGORITHM
As mentioned above, the auxiliary classifier distribution
rψ (c|S) trained using {Sm, cm}Mm=1 is expected to be a good
approximation of the conditional distribution p(c|S). Now,
in the same way that we considered the encoder that flexibly
allows for an unnormalized input, here we also consider
an auxiliary classifier rψ (c|S, g) that incorporates the global
scale parameter g such that

rψ (c|S, g) = Mult(c|ρψ (S/g)). (30)

Using the trained auxiliary classifier and encoder, we can
obtain an approximation p(zj, cj|Sj, gj) ≈ rψ (cj|Sj, gj)
qφ(zj|Sj, cj, gj). Since the maximum points of rψ (cj|Sj, gj)
and qφ(zj|Sj, cj, gj) can be found immediately, we can use
these approximate distributions to find an approximate solu-
tion to (zj, cj) = argmaxzj,cj p(zj, cj|Sj, gj) instead of the
gradient descent update for increasing log pθ (Sj|zj, cj, gj) +
log p(zj) + log p(cj). Figure 3 shows the flowchart of the
proposed algorithm for the I = 2 case. The algorithm is

summarized in Algorithm 2. The main difference between the
new algorithm from the original version is that the optimal zj
and cj are estimated using the forward propagations of the
two pretrained networks instead of using gradient descent
updates. Specifically, zj is given as the mean of the encoder
distribution µφ(Sj/gj, cj). There are two possible ways to
update the class variable cj. One is to directly use the proba-
bility vector produced by the auxiliary classifier network

cj← ρψ (Sj/gj). (31)

We hereafter refer to the proposed algorithm using this update
rule as fMVAE_c. The other is to use the one-hot vector closest
to the output of the auxiliary classifier

[cj]k ←

{
1, (k = k̂),
0, (k 6= k̂),

(32)

k̂ = argmax
k

[ρψ (Sj/gj)]k , (33)

where [·]k is used to denote the kth element of a vec-
tor. We hereafter refer to the algorithm using this update
rule as fMVAE_o. Here, the subscripts are the first letters
of ‘‘continuous’’ and ‘‘one-hot’’, respectively. rψ (cj|Sj, gj)
can be seen as a speaker recognizer trained with explicit
supervision. Hence, the proposed algorithm is expected to
perform better than the original version in terms of speaker
identification accuracy. However, one downside would be
that it does not guarantee a non-decrease in the objective
function because of the approximation p(zj, cj|Sj, gj) ≈
rψ (cj|Sj, gj)qφ(zj|Sj, cj, gj). How this actually affects source
separation performance will be discussed later.

D. PRIOR-WEIGHTED INFERENCE
The encoder network is trained so that qφ(z|S, c) becomes
as close as possible to p(z) = N (z|0, I). However, through
preliminary experiments, we found that at test time the
trained encoder occasionally produced outliers that signifi-
cantly deviated from the assumed distributionN (z|0, I). This
may be because the encoder did not generalize very well
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Algorithm 2 fMVAE Algorithm
Require: Network parameter θ , φ, ψ trained using (29),

observed mixture signal x(f , n), iteration number L ,
weight parameter α

1: randomly initializeW , 9
2: optional: updateW using a BSS method
3: for ` = 1 to L do
4: for each source j of J do
5: yj(f , n) = wH

j (f )x(f , n)
6: (updating source model paremeters)
7: initialize gj using (19)
8: normalization: S̄j = {yj(f , n)/gj}f ,n
9: update cj using (31) or (32)

10: update zj using (36)
11: compute σ 2

j (f , n; zj, cj, gj = 1, θ)
12: update gj using (19)
13: compute vj(f , n) = gj · σ 2

j (f , n; zj, cj, gj = 1, θ)
14: (updating demixing matrices)
15: update wj(f ) by IP method with (17), (18)
16: end for
17: end for

due to the limited amount of training data or the mismatch
between the training and test conditions. Since the decoder
network was trained under the assumption that its input fol-
lows N (z|0, I), these outliers tended to negatively affect the
resulting decoder outputs and eventually the estimate of W.
One heuristic way to address this problemwould be to reapply
the prior distribution p(z) during inference. In the following,
we omit the source index j in this subsection for simplicity of
notation.

As a way of reapplying the prior, we adopt the concept of
product-of-experts (PoE) [28] and define ẑ as

ẑ = argmax
z

p(z|S, c, g)p(z)α

≈ argmax
z

qφ(z|S, c, g)p(z)α

= argmax
z

log qφ(z|S, c, g)+ α log p(z), (34)

where α weighs the importance of the prior in the inference.
Since both qφ(z|S, c, g) and p(z) are multivariate Gaussian
distributions, (34) can be expressed as

log qφ(z|S, c, g)+ α log p(z)

=
c
−
1
2

(
z− µφ(S/g, c)

)T
6−1φ

(
z− µφ(S/g, c)

)
−
α

2
zTz

=
c
−
6−1φ + αI

2
(z− µ)T(z− µ), (35)

where 6φ = diag(σ 2
φ(S/g, c)) and µ = 6−1φ (6−1φ +

αI)−1µφ(S/g, c). Therefore, the update rule for z can be
easily derived as

z← 6−1φ (6−1φ + αI)
−1µφ(S/g, c). (36)

Note that (36) reduces to the mean of the encoder distribution
when α = 0.

E. POTENTIAL ADVANTAGE OF CVAE OVER REGULAR VAE
IN TERMS OF SOURCE MODELING
Although theMVAEmethod uses a CVAE for source spectral
modeling, one can also think of using a regular (uncondi-
tional) VAE, as in the VAE-NMF framework. In this case,
all the factors of variations in speech spectra, including
the speaker identity factor, will be encoded into the latent
variables. However, this can lead to an overparametrized
representation since even though the speaker identity fac-
tor should be considered time-invariant (unlike phoneme-
and F0-related factors), the latent variables are allowed to
vary over time. Hence, when estimating the latent variable
sequence of each source in a given mixture, we would want
to separate out only the speaker identity factor from the latent
variable sequence and force it to be time-invariant so as not to
allow it to change during the utterance. This is the motivation
behind the idea of using a CVAE instead of a regular VAE. A
quantitative comparison between these choices is provided in
Subsection V-E.

V. EXPERIMENTAL EVALUATIONS
To evaluate the effectiveness of the proposed method,
we conducted several multi-speaker source separation
experiments in which we considered speaker-dependent
and speaker-independent separation tasks. Specifically,
the speaker-dependent and speaker-independent conditions
indicate whether the test speaker is seen in the training
dataset. It should be noted that even in the speaker-dependent
condition, the training and test sets are disjoint at the sen-
tence level. In this section, we first provide the details of
the baseline algorithms in Subsection V-A and the network
architectures used in the baseline and proposed methods
in Subsection V-B. We then show how the dataset was
created and present the experimental results obtained under
the speaker-dependent condition in Subsections V-C – V-F.
In Subsection V-G, we describe the large-scale dataset
designed for the speaker-independent task and show the
experimental results.

A. BASELINE METHODS FOR COMPARISON
We chose ILRMA [6], IDLMA [46], and the original MVAE
method 2 [21] as the baseline methods for comparison.
We tested several different versions of the proposed and base-
line methods. We use the terms ‘‘supervised/unsupervised’’
and ‘‘informed/uninformed’’ to properly categorize each ver-
sion of the methods. The terms ‘‘supervised’’ and ‘‘unsuper-
vised’’ indicate whether a method requires training examples
of source signals prior to source separation, while the terms
‘‘informed’’ and ‘‘uninformed’’ indicate whether a method
is informed about which sources are present in a test mix-
ture signal. Categorization of each version is summarized in
Table 1.
We set the basis number Tj = 10 for u.u.ILRMA and

randomly initialized the basis spectra and activation matrix.

2Code: https://github.com/lili-0805/MVAE
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TABLE 1. Methods for comparison.

FIGURE 4. Network architectures of the encoder and decoder used for
MVAE and fMVAE and the classifier used for fMVAE. The inputs and
outputs are one-dimensional data, where the frequency dimension of the
spectrograms is regarded as the channel dimension. The ‘w’, ‘c’, and ‘k’
denote the width, channel number, and kernel size, respectively. Conv
and Deconv denote one-dimensional convolution and deconvolution; BN
and GLU stand for batch normalization and gated linear unit.

For supervised ILRMA, basis spectra with T = 10 were pre-
trained for each speaker in the training dataset using the NMF
algorithm. They were then concatenated and used as a unified
model to represent all the sources in s.u.ILRMA, whereas the
basis spectra corresponding to the specific speakers present in
a mixture signal were provided to the method in s.i.ILRMA.

B. NETWORK ARCHITECTURES
Figure 4 depicts the details of the network architectures
employed in the MVAE and fMVAE methods. We used
the same network architectures to train the CVAE and
ACVAE. All the networks were designed to be fully convo-
lutional to handle input spectrograms of signals with arbi-
trary lengths. We used one-dimensional gated convolutional
neural networks (CNNs) [47] to model spectrograms, which
allows the networks to capture time dependencies in spectral
sequences. Gated CNNs were initially introduced to model
word sequences for language modeling and shown to out-
perform long short-term memory (LSTM) language models
trained in a similar setting. The effectiveness of employing
a gated CNN to model a spectrogram has already been con-
firmed [48], [49]. By using Ol−1 to denote the output of the
(l − 1)th layer, the output of the lth layerOl of a gated CNN

FIGURE 5. Learning curves of CVAE and ACVAE source models.

can be written as

Ol = (Ol−1 ∗W
f
l + b

f
l)⊗ σ (Ol−1 ∗W

g
l +B

g
l ), (37)

where Wf
l , W

g
l , B

f
l , and B

g
l are weight and bias param-

eters of the lth layer, ⊗ denotes element-wise multiplica-
tion, and σ is the sigmoid function. The main difference
between a gated CNN and a regular CNN layer is that a
gated linear unit (GLU), namely the second term of (37),
is used as a nonlinear activation function. Like LSTMs,
GLUs have data-driven gates, which control the information
passed on in the hierarchy. At each gated CNN layer in the
encoder and decoder, a broadcast version of c is appended
along the channel dimension to the output of the previous
layer. Adam [50] was used to train the networks. Note that
Algorithm 1 and Algorithm 2 correspond to s.u.MVAE and
s.u.fMVAE_o/s.u.fMVAE_c, respectively. For s.i.MVAE and
s.i.fMVAE, the correct class label cj is given and fixed during
the update. Figure 5 shows the learning curves of the CVAE
and ACVAE training processes. The curves demonstrate that
the networks were trained stably with fast convergence.

For s.i.IDLMA, we used a fully connected neural network
with four hidden layers. Each layer had 1024 units, and a rec-
tified linear unit was used for the output of each layer, which
was the same as the network architecture used in [46]. We
implemented the training settings described in [46], namely
using the Gaussian-IDLMA loss function and concatenation
of the current, preceding, and succeeding frames to capture
the temporal dependency, data augmentation, and regular-
ization. The only difference was the optimization algorithm,
where we used Adam to train the network for 700 epochs
instead of Adadelta [51] for 200 epochs. More training details
are available in [46].

C. DATASET FOR SPEAKER-DEPENDENT SEPARATION
As in the original MVAE paper [21], we used speech
utterances of two male speakers (SM1, SM2) and two
female speakers (SF1, SF2) excerpted from the Voice
Conversion Challenge (VCC) 2018 dataset [52] for the
speaker-dependent source separation experiment. The audio
files for each speaker were about seve minutes long and
manually segmented into 116 short sentences, where 81 and
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FIGURE 6. Configuration of room, where ◦ and × represent the positions
of microphones and sources, respectively.

35 sentences (about five and two minutes long, respectively)
served as training and test sets, respectively.

We used two-channel mixture signals of two sources as
the test data, which were synthesized using simulated room
impulse responses (RIRs) generated using the image method
[53] and real RIRs measured in an anechoic room (ANE)
and an echo room (E2A). Figure 6 shows the configuration
of the room used for simulating RIRs. To meet the instan-
taneous mixing model assumption, the reverberation times
(RT60) [54] of the simulated RIRs were set at 78 and 351 ms,
which were controlled by setting the reflection coefficient of
the walls at 0.20 and 0.80, respectively. For the measured
RIRs, we used the data included in the RWCP Sound Scene
Database in Real Acoustic Environments [55]. The RT60 of
ANE and E2A were 173 and 225 ms, respectively. The test
data included 4 pairs of speakers, i.e., SF1+SF2, SF1+SM1,
SM1+SM2, and SF2+SM2. For each speaker pair, we gen-
erated ten mixture signals. Hence, there were a total of 40 test
signals for each reverberation condition, each of which was
about four to seven seconds long. All the speech signals were
resampled at 16 kHz.

D. EXPERIMENTAL ANALYSIS OF WINDOW LENGTH,
INITIALIZATION, AND WEIGHT PARAMETER α
In this subsection, we compare the separation performance
across different STFTwindow lengths, different initialization
methods for the MVAE and fMVAE algorithms, and different
α settings.
Since all the methods are based on the instantaneous linear

mixture model, the STFT window length may affect the
separation performance of each of them, especially under
reverberant conditions. We computed the STFT using a Ham-
ming window with a length of {32, 64, 128, 256} ms, and by
shifting half of the length for each frame. In this experiment,
all the MVAE and fMVAE methods were initialized by run-
ning u.u.ILRMA for 30 iterations. The MVAE or fMVAE
algorithm was then run for 30 iterations, where Adam was
used to update zj and cj in theMVAEmethods with a step size
set of 0.01. We used α = 0 for fMVAE in this experiment.
Table 2 shows the SDR scores obtained with each method.
From these results, the optimal window length that gave the
best overall performance was 128 ms for the current dataset.

TABLE 2. Average SDR [dB] obtained with various STFT settings. The bold
font shows the best scores.

TABLE 3. Average SDR [dB] obtained by MVAE and fMVAE methods
adopting different initialization approaches. The bold font shows the best
scores.

Therefore, we conducted all the following experiments using
a window length of 128 ms.

To confirm the impact of the initialization for the MVAE
and fMVAE methods on the source separation performance,
we compared the algorithms using the following three ini-
tialization methods: 1) random initialization with the demix-
ing matrices initialized at identity matrices; 2) IVA; and
3) u.u.ILRMA. To keep the number of updates of the demix-
ing matrices constant, each algorithm was run for 60 iter-
ations for the random initialization case and 30 iterations
after an initialization algorithm was run for 30 iterations
for the other cases. Table 3 shows the SDR scores over
the 160 test samples. From these results, we found that the
methods adopting ILRMA for initialization achieved better
performance than those using IVA for initialization. One
possible reason could be that block permutation had occurred
in IVA. It is worth noting that the MVAE methods with
random initialization obtained more than 3 dB higher SDR
improvements than when using IVA and ILRMA for ini-
tialization. Meanwhile, though random initialization slightly
outperformed ILRMA in s.u.fMVAE_c and s.i.fMVAE, there
were no noticeable differences. Therefore, we adopted ran-
dom initialization in the following experiments.

Finally, we investigated how much the performance
depends on the weight parameter α in the prior-weighted
inference. We set α at {0, 1, 10, 50, 100, 200, 300,mean},
where ‘‘mean’’ indicates the data-dependent setting

α =
1
K

K∑
k

σ 2
φ (k;S, c). (38)

Figure 7 shows the average SDR scores over 160 test signals.
We found that the effectiveness of the prior distribution p(z)
in improving the source separation performance was modest
in the speaker-dependent case and that the SDRs started to
decrease at α > 10, which indicates that a smaller value
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FIGURE 7. Average SDR achieved with various α in a speaker-dependent
condition.

TABLE 4. Average SDR, SIR, SAR, PESQ, and STOI scores achieved by
MVAE with CVAE and VAE for source modeling. The bold font indicates the
best scores.

leads to better performance for the speaker-dependent case.
Moreover, the curve of fMVAE_o was entirely above the
curve of fMVAE_c without regard for the choice of the ini-
tialization methods, which indicates that fMVAE_o is more
effective in speaker-dependent scenarios.

E. SOURCE SEPARATION PERFORMANCE
In addition to SDRs, we used signal-to-interference
ratios (SIRs) and signal-to-artifact ratios (SARs) [56] to eval-
uate the source separation performance. Perceptual evalua-
tions of speech quality (PESQ)3 [57] and short-time objective
intelligibility (STOI)4 [58] were also conducted to ascertain
the speech quality and intelligibility. All the criteria were
calculated using a dry source as the reference signal.

We first confirmed the effectiveness of conditional model-
ing by comparing the performance obtained with the CVAE
source model and its unconditional counterpart under the
MVAE framework. Table 4 shows SDR, SIR, SAR, PESQ,
and STOI scores. As can be seen from the results, the CVAE
source model obtained a 1.7-dB higher SDR than a source
model based on a regular VAE.

Table 5 shows scores obtained by each method with the
optimal parameter setting. By comparing supervised methods
to the blind method (u.u.ILRMA), we confirmed that an
appropriately pretrained source model could lead to consid-
erably improved source separation performance. The MVAE
methods achieved the best scores in both the uninformed and
informed categories, which significantly outperformed the
other methods. The fMVAE method yielded an average SDR
score that was 2.8 dB lower than the original MVAE method,
but about 0.75 dB higher than the other baseline methods.

3Code: https://github.com/vBaiCai/python-pesq
4Code: https://github.com/mpariente/pystoi

TABLE 5. Average SDR, SIR, SAR, PESQ, and STOI scores achieved by each
method with the optimal parameter setting. The bold font indicates the
best scores.

TABLE 6. Computational times of MVAE and fMVAE methods with
random initialization.

F. COMPUTATIONAL TIME
The average computational times of the MVAE and fMVAE
methods with random initialization are summarized in
Table 6. All the programs were run using an Intel (R) Core
i7-7800X CPU@3.50 GHz and a TITANVGPUwith 12-GB
memory. Here, ‘‘runtime/iteration’’ means the computational
time required to update the parameters once using the MVAE
or fMVAE algorithm. The ‘‘total’’ time indicates the time
taken by the entire process, including the time for construct-
ing the system (e.g., loading the pretrained networks to a
GPU), updating parameters, and performing the separation.
Through the comparison of the runtime at each iteration,
we found that the fMVAE algorithm was about 70 times
faster than the MVAE algorithm. Moreover, fMVAE was
found to reduce the computational time by more than 90%
even when using a CPU. These results indicate a tradeoff
between the source separation performance and computa-
tional time: theMVAEmethod provides better separation per-
formance with high computational cost, whereas fMVAE sig-
nificantly reduces computational cost but with performance
degradation.

G. SPEAKER-INDEPENDENT SEPARATION
In practical applications, the speakers in a given mixture
signal are not always included in the training dataset. In
this subsection, we show the performance of the MVAE and
fMVAE methods in speaker-independent tasks and compare
them with u.u.ILRMA, which requires no prior information
about the speakers.

We created datasets using utterances from the Wall Street
Journal (WSJ0) corpus [59]. All the utterances inWSJ0 folder
si_tr_s (around 25 hours) were used as the training set,
which consists of 101 speakers in total. If there is a large
number of utterances of a sufficientlywide variety of speakers
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FIGURE 8. Average SDR over 200 test signals achieved with various α.

TABLE 7. Average SDR, SIR, SAR, PESQ, and STOI scores obtained with
uninformed methods. The bold font shows the best scores.

in the training dataset, the trained model is expected to have
an ability to express spectrograms of unseen speakers. When
a test mixture contains unseen speakers, (31) can be inter-
preted as how similar speaker j is to the speakers in the train-
ing set, whereas (32) indicates the speaker in the training set
most similar to speaker j. A test set was created by randomly
mixing two different speakers selected from theWSJ0 folders
si_dt_05 and si_et_05, where the number of speakers
was 18. We generated test data using simulated RIRs with
RT60 = 78 ms and RT60 = 351 ms, where 100 mixture
signals were generated under each reverberation condition.
The average SDRs of the datasets were about 0.60 dB and
-0.78 dB, respectively. Other experimental conditions and
network architectures were the same as those described in
Subsection V-C.

As in the speaker-dependent case, we first investigated
the dependence of the separation performance on the α
setting. Figure 8 shows the average SDR scores over the
entire test dataset achieved with various α settings. Since
the scores obtained with α = 200 and α = 300 increased
continuously, we additionally evaluated the performance
obtained when α = {500, 700, 1000, 1500, 2000}. The opti-
mal α settings were 500 for s.u.fMVAE_o and 2000 for
s.u.fMVAE_c, respectively. This was considerably different
from the speaker-dependent case, where a smaller α per-
formed better. From these results, we can assume that the pro-
posed prior-weighted update rule was more effective under
open-set conditions than under closed-set conditions.

Table 7 summarizes the average SDR, SIR, SAR, PESQ,
and STOI scores obtained with each method with random
initialization. The results demonstrate the ability of the
MVAE and fMVAE methods to handle speaker-independent
scenarios with an increasing variety and amount of train-
ing data. Both the MVAE and fMVAE methods were

superior to u.u.ILRMA, where s.u.MVAE achieved an
improvement of more than 3.5 dB over u.u.ILRMA. As with
the speaker-dependent case, the fMVAE methods provided
less improvement than the MVAE method.

VI. CONCLUSION
This paper proposed a novel optimization algorithm for the
MVAE method, which is called FastMVAE (or fMVAE). The
proposed method exploits an auxiliary classifier VAE instead
of a regular CVAE to learn the generative distribution of
source signals and employs the trained auxiliary classifier and
encoder for inference. We newly introduced a prior-weighted
update rule for the latent variables of each CVAE source
model and different update rules for the class label of each
source. We conducted experiments to investigate the optimal
window length, initialization, and weight parameter and per-
formed speaker-dependent and speaker-independent source
separation experiments to confirm the effectiveness of the
proposed method. Experimental results revealed that fMVAE
can significantly reduce computational time by more than
90% compared with the original MVAE method; the MVAE
and fMVAE methods outperformed conventional methods
under speaker-dependent conditions; and the MVAE and
fMVAE methods can handle a speaker-independent scenario
by using a large set of training data.
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