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ABSTRACT This paper proposes a basis training algorithm for discriminative non-negative matrix factor-
ization (NMF) with applications to single-channel audio source separation. With an NMF-based approach
to supervised audio source separation, NMF is first applied to train the basis spectra of each source using
training examples and then applied to the spectrogram of a mixture signal using the pretrained basis spectra
at test time. The source signals can then be separated out using a Wiener filter. Here, a typical way to train
the basis spectra is to minimize the dissimilarity measure between the observed spectrogram and the NMF
model. However, obtaining the basis spectra in this way does not ensure that the separated signal will be
optimal at test time due to the inconsistency between the objective functions for training and separation
(Wiener filtering). To address this mismatch, a framework called discriminative NMF (DNMF) has recently
been proposed. While this framework is noteworthy in that it uses a common objective function for training
and separation, the objective function becomes more analytically complex than that of regular NMF. In
the original DNMF work, a multiplicative update algorithm was proposed for the basis training; however,
the convergence of the algorithm is not guaranteed and can be very slow. To overcome this weakness,
this paper proposes a convergence-guaranteed algorithm for DNMF based on a majorization-minimization
principle. Experimental results show that the proposed algorithm outperform the conventional DNMF
algorithm as well as the regular NMF algorithm in terms of both the signal-to-distortion and signal-to-
interference ratios.

INDEX TERMS Discriminative non-negative matrix factorization (NMF), majorization-minimization,
single-channel signal processing, speech enhancement, source separation.

I. INTRODUCTION
Single-channel audio source separation is a challenging task
of extracting individual source signals from a monaural
recording of a mixture signal. Since the presence of noise or
interference can severely degrade the performance of many
audio applications such as automatic transcription of music,
speech recognition, voice conversion, many attempts have
been made to address this problem [1]–[8]. One success-
ful approach for monaural audio source separation involves
applications of non-negative matrix factorization (NMF)
[6], [10]. Although deep neural networks-based methods
[7]–[9] have been shown towork impressively in recent years,
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the NMF approach still remains attractive when only a limited
amount of training data is available.

The basic idea of the NMF approach is to interpret the
observed magnitude (or power) spectrogram of a signal as
a non-negative matrix and factorize it into the product of
non-negative matrices. This amounts to approximating the
observed spectra by a linear sum of basis spectra scaled
by time-varying amplitudes. In a supervised/semi-supervised
source separation problem setting, NMF is first used to train
the basis spectra of each sound source using individually
recorded audio samples. At test time, NMF is applied to
the spectrogram of a test mixture signal, where each subset
of the basis spectra is fixed at the pretrained spectra. The
source signals can then be separated out using a Wiener filter
constructed by employing the estimated power spectrogram
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of each source. A typical way to train the basis spectra of each
source is tominimize a divergencemeasure between theNMF
model and the spectrogram of the training samples of that
source. However, the basis spectra obtained in this way do not
ensure that the separated signal at test time will be optimal
since the objective functions for training and separation are
inconsistent, namely a divergence measure for training and
Wiener filtering for separation.

To address this mismatch between the training and test
objectives, a framework called discriminative NMF (DNMF)
has recently been proposed [11]. While many methods called
‘‘discriminative NMF’’ [12]–[17] have been proposed with
the aim of enhancing the discriminative power of the basis
spectra, in this paper, we use this term in relation to the work
done by Weninger [11]. Note that the term ‘‘discriminative’’
is used in association with the discriminative models for
classification and regression. The central idea of DNMF is
that the basis spectra are trained in such a way that the output
of the Wiener filter becomes as close to the spectrogram of
each of the training examples as possible so that the sep-
arated signals become optimal at test time. This approach
differs from the conventional supervised NMF framework
in that it uses the training examples of all the sources to
train the basis spectra for each of the sources. This is impor-
tant since it helps to enhance the discriminative power of
the basis spectra. However, the training criterion for DNMF
becomes analytically more complex than the typical diver-
gence measures used in the standard NMF framework, which
causes difficulty as regards optimization of the basis spectra.
In [11], Weninger proposed a multiplicative update (MU)
algorithm for the basis training, where the multiplicative fac-
tor is obtained by dividing the negative parts by the positive
parts of the partial derivative of the objective function as
done in [18]. Although this way of obtaining update rules
is indeed convenient in that it is applicable as long as an
objective function is differentiable, one drawback is that the
algorithm is generally not guaranteed to converge to a sta-
tionary point. To overcome this weakness, this paper proposes
using amajorization-minimization (MM) principle to derive a
convergence-guaranteed basis training algorithm for DNMF.
We show in Sec. IV that using the present basis training
algorithm instead of the conventional MU algorithm leads to
notable improvements in source separation performance.

The rest of this paper is organized as follows.
Section Sec. II reviews the standard NMF and DNMF
approaches for single-channel source separation and the mul-
tiplicative update algorithm. In section Sec. III, we introduce
the MM principle, on which basis we derive the proposed
algorithm. We show the experimental results in Sec. IV and
conclude the paper in Sec. V.

II. DISCRIMINATIVE NON-NEGATIVE MATRIX
FACTORIZATION
A. STANDARD NMF APPROACH
We start by reviewing the standard NMF approach for
single-channel source separation. Let the number of sources

be L. We use Y = (yω,t )�×T ∈ R≥0,�×T to denote
the power spectrogram of a mixture signal obtained using
the short-term Fourier transform (STFT), where ω and t
are the frequency and time indices, respectively. With the
supervised NMF approach, we factorize Y, interpreted as
a non-negative matrix, into the product of a non-negative
basis matrix W̃ = [W̃1, W̃2, . . . .W̃L] and a non-negative
coefficient (activation) matrix Ĥ = [Ĥ1

; Ĥ2
; . . . ; ĤL], where

W̃l
= (w̃lω,k )�×K l ∈ R≥0,�×K l

is assumed to be pretrained
using the spectrogram of a training sample Sl = (slω,t )�×T
for each l = 1, 2, . . . ,L. A common way to train W̃l is to
solve

(W̃l, H̃l) = argmin
Wl ,Hl

D(Sl |WlHl)+ µ||Hl
||1, (1)

where D is a cost function that measures the dissimilarity of
Sl and WlHl . Here, we have assumed µ‖Hl

‖1 is used as a
regularization term for promoting sparsity of ‖Hl

‖1, where
µ is a regularization parameter that weighs the importance of
the regularization term. Note that we can use other kinds of
regularization terms, but here we omit them for simplicity.
At test time, the concatenated basis matrix W̃ is fixed at
the pretrained basis spectra and the activation matrix H is
estimated by solving

Ĥ = argmin
H

D(Y|W̃H)+ µ||H||1, (2)

subject to non-negativity. Typical choices forD(Y|X) include
the Euclidean distance, the generalized Kullback-Leibler
(KL) divergence, and the Itakura-Saito (IS) divergence:

DEU (Y|X) = ‖Y− X‖2F =
∑
ω,t

|yω,t − xω,t |2, (3)

DKL(Y|X) =
∑
ω,t

(
yω,t log

yω,t
xω,t
− yω,t + xω,t

)
, (4)

DIS (Y|X) =
∑
ω,t

(
yω,t
xω,t
− log

yω,t
xω,t
− 1

)
, (5)

where yω,t and xω,t are the (ω, t)th elements of Y and X.
A naïve way of obtaining the time-domain signal of the

lth source is to simply use W̃lĤl and the phase spectrogram
of the mixture signal to obtain the complex spectrogram and
perform the inverse STFT. However, the signals obtained in
this way usually contain artifacts and often sound artificial.
Another widely used way involves using the Wiener filter.
Namely, once W̃ and Ĥ are obtained, the magnitude spectro-
gram of the lth source can be refined using the Wiener filter
constructed using the estimated power spectrogram

Cl
=

W̃lĤl

W̃Ĥ
� Y (6)

so that C1, . . . ,CL are ensured to sum to the magnitude spec-
trogram Y of the test mixture signal, where � and ·

·
denote

elementwise multiplication and division. Note that here we
have used sans serif fonts to express magnitude spectrograms,
Y =
√
Y and Cl

=
√
Cl , where

√
· denotes the element-wise

square-root.
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FIGURE 1. Flowchart of DNMF in two-source case.

B. DISCRIMINATIVE NMF
If we assume theWiener filter is used to obtain source signals,
the training and test objectives become inconsistent. Namely,
the basis spectra are not necessarily trained in such a way that
the separated signals at test time will be optimal. With the
standard NMF approach, at test time, the basis matrix W is
used not only for estimatingH from Y but also for construct-
ing theWiener filter in Eq. (6). To make the training objective
consistent with this test inference procedure, Weninger [11]
proposed introducing two separate basis matrices for these
different purposes, B and W, and formulating a bilevel opti-
mization problem

(B̃l, H̃l) = argmin
Bl ,Hl

D(Sl |BlHl)+ µ||Hl
||1, (7)

Ĥ = argmin
H

D(M|B̃H)+ µ||H||1, (8)

W̃ = argmin
W

∑
l

αlD
(

Sl
∣∣∣∣WlĤl

WĤ
�M

)
(9)

for training B and W so that B will be optimized for esti-
mating H from Y and W will be optimized for obtaining
C1, . . . ,CL based on the Wiener filter. Here, αl ≥ 0 is
a constant that weighs the importance of source l. M =

(mω,t )�×T ∈ R≥0,�×T denotes the power spectrogram of a
mixture signal, which can be simply constructed by mixing
the training samples S1 = (s1ω,t )�,T , . . . ,S

L
= (sLω,t )�,T .

M = (mω,t )�,T and Sl
= (slω,t )�,T denote the magnitude

spectrograms
√
M and

√
Sl , respectively. When our goal is

to reconstruct a single-source l only, we shall set αl at 1 and
0 for other sources l ′ 6= l. Fig. 1 illustrates the training and
test processes of DNMF using two sources.

C. MULTIPLICATIVE UPDATE ALGORITHM
An inspection of Eqs. (1) and (9) shows that the train-
ing criterion for DNMF is more analytically complex than

the objective function of standard NMF. In [11], Weninger
proposed a two-stage iterative algorithm for solving the
above optimization problem: First, B and H are obtained by
solving Eq. (8) using a standard NMF algorithm. Second,
by using the obtained H, the basis matrix W is iter-
atively updated according to multiplicative update rules.
Here, we set αl = 1 and αl′ = 0 (l ′ 6= l) and
define Wl̄

= [W1, · · · ,Wl−1,Wl+1, · · · ,WL] and Hl̄
=

[H1
; · · · ;Hl−1

;Hl+1
; · · · ;HL]. When D is defined as the

KL divergence, the update rules are given by

Wl
← Wl

�

Sl
� (Wl̄Hl̄)

(WH)� (WlHl)
HlT

M� (Wl̄Hl̄)
(WH)� (WH)

HlT

, (10)

Wl̄
← Wl̄

�

M� (WlHl)
(WH)� (WH)

Hl̄T

Sl

WH
Hl̄T

. (11)

Here, the multiplicative factors are given by dividing the
negative parts by the positive parts of the partial derivatives of
the objective function in Eq. (9) with respect to the elements
ofWl andWl̄ , as done in [18]. Although this way of obtaining
update rules is convenient in that it is generally applicable as
long as an objective function is differentiable, one downside
is that the algorithm is not guaranteed to converge to a sta-
tionary point.

III. DNMF WITH MAJORIZATION-MINIMIZATION
A. MAJORIZATION-MINIMIZATION PRINCIPLE
To overcome the weakness of the conventional MU algo-
rithm, in this paper, we propose employing an MM principle
to derive a novel convergence-guaranteed algorithm for solv-
ing Eq. (9).When constructing anMMalgorithm tominimize
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a certain objective function, themain issue is how to design an
auxiliary function called a ‘‘majorizer’’ that is guaranteed to
never be below the objective function. The following lemma
shows that once we obtain an auxiliary function, we can
develop an iterative algorithm such that the objective function
is guaranteed to be non-increasing at each iteration.
Lemma 1: If we use F(2) to denote an objective func-

tion that we want to minimize with respect to 2 and use
F+(2,3) to denote its auxiliary function, satisfying F(2) =
min3 F+(2,3), then F(2) is non-increasing under the fol-
lowing updates of 3 and 2:

3̂ = argmin
3

F+(2,3), (12)

2̂ = argmin
2

F+(2,3). (13)

Thus, if F(2) is bounded below, a stationary point of F(2)
can be found by iteratively performing these updates.

Proof of Lemma 1: Suppose we set 2 to an arbitrary
value 2̃. We will prove that F(2) is non-increasing after the
update Eq. (12) and Eq. (13). From Eq. (12), one obtains
F(2̃) = F+(2̃, 3̂), and it is obvious from Eq. (13) that
F+(2̃, 3̂) ≥ F+(2̂, 3̂). By definition, one sees from
Eq. (12) that F+(2̂, 3̂) ≥ F(3̂). Therefore, we can imme-
diately prove that F(2̃) = F+(2̃, 3̂) ≥ F+(2̂, 3̂) ≥ F(2̂).

It should be noted that this concept is adopted in
many existing algorithms. For example, the expectation-
maximization (EM) algorithm [19] builds a surrogate for a
likelihood function of latent variable models using Jensen’s
inequality. It is also well known for its use in devising an
algorithm for standard NMF [10], [20]. In general, if we can
build a tight majorizer that is easy to optimize for the objec-
tive function of some optimization problems, we can expect
to obtain a fast-converging algorithm. Another advantage of
MM-based algorithms is that they have no hyperparameters
to tune. This is in contrast to gradient-based methods, which
usually require step-size settings.

B. DERIVATION OF MAJORIZERS
Here, we derive majorizers for the objective function where
D is defined as the KL divergence and IS divergence. When
D is defined as the KL divergence, the objective function in
Eq. (9) is given by

fKL(W)

=

∑
l

αlDKL

(
Sl
∣∣∣∣WlHl

WH
�M

)

=
c
∑
l

αl
∑
ω,t

(
− slω,t log g

l
ω,t+slω,t log gω,t +

glω,t
gω,t

mω,t

)
,

(14)

where we have used glω,t and gω,t to represent

glω,t =
K l∑
k=1

wlω,kh
l
k,t , (15)

gω,t =
K∑
k=1

wω,khk,t (16)

and =c to denote equality up to a constant term. First, let us
focus on the term glω,t/gω,t . To construct a majorizer for this
term, we can use the following inequality:
Lemma 2: For a > 0 and b > 0, we have

a
b
≤
λa2

2
+

1
2λb2

.

The equality holds if and only if

λ =
1
ab
.

Proof of Lemma 2: For a, b, λ > 0,

λ

(
a−

1
λb

)2

= λ

(
a2 − 2

a
λb
+

1
λ2b2

)
≥ 0

⇒
a
b
≤
λa2

2
+

1
2λb2

. (17)

The equality holds if and only if a− 1
λb = 0.

Since mω,t is non-negative, we can construct an upper
bound for glω,tmω,t/gω,t according to the above lemma,

fKL(W) ≤
∑
l

αl
∑
ω,t

(
− slω,t log g

l
ω,t + slω,t log gω,t

+
λlω,tmω,tglω,t

2

2
+

mω,t

2λlω,tgω,t2

)
. (18)

The equality of Eq. (18) holds if and only if

λlω,t =
1

glω,tgω,t
. (19)

In the following, we construct a majorizer for each of the
terms on the right-hand side of Eq. (18).

We notice that the function− log x is convex. Since slω,t is
positive, −slω,t log g

l
ω,t is convex in glω,t . Hence, we can use

Jensen’s inequality to obtain a majorizer for this term as

− log glω,t ≤ −
K l∑
k=1

γ lk,ω,t log
wlω,kh

l
k,t

γ lk,ω,t
, (20)

where γ lk,ω,t is a positive weight that sums to unity:

K l∑
k=1

γ lk,ω,t = 1. (21)

The equality of Eq. (20) holds if and only if

γ lk,ω,t =
wlω,kh

l
k,t∑K l

k ′=1 w
l
ω,k ′h

l
k ′,t

. (22)

The second term slω,t log gω,t is concave in gω,t . Hence,
we can use the fact that a tangent line to the graph of a
differentiable concave function lies entirely above the graph:

log gω,t ≤
∑
k

wω,khk,t
ηω,t

+ log ηω,t − 1, (23)

227402 VOLUME 8, 2020



L. Li et al.: Majorization-Minimization Algorithm for DNMF

where ηω,t is an arbitrary positive number. The equality of
this inequality holds if and only if

ηω,t = gω,t . (24)

Since a quadratic function is convex, we can apply Jensen’s
inequality to the third term, which yields

glω,t
2
≤

K l∑
k=1

wlω,k
2hlk,t

2

β lk,ω,t
, (25)

where β lk,ω,t > 0 is also a positive number that sums to unity:

K l∑
k=1

β lk,ω,t = 1. (26)

The equality of Eq. (25) holds if and only if

β lk,ω,t =
wlω,kh

l
k,t∑K l

k ′=1 w
l
ω,k ′h

l
k ′,t

. (27)

As regards the fourth term, we can use the fact that the
function 1/x2 is convex in the first quadrant and use Jensen’s
inequality to obtain a majorizer:

1

g2ω,t
≤

∑
k

θ3k,ω,t

w2
ω,kh

2
k,t

, (28)

where θk,ω,t is a positive number that sums to unity:∑
k

θk,ω,t = 1. (29)

We can confirm that the equality of this inequality holds if
and only if

θk,ω,t =
wω,khk,t∑
k ′ wω,k ′hk ′,t

. (30)

From Eqs. (18), (20), (25), and (28), we can construct a
majorizer for the objective function with KL divergence as

fKL(W)

≤

∑
l

αl
∑
ω,t,k

(slω,twω,khk,t
ηω,t

− slω,tγ
l
k,ω,t log

wlω,kh
l
k,t

γ lk,ω,t

+
λlω,tmω,t

2β lk,ω,t
wlω,k

2hlk,t
2
+

mω,tθ
3
k,ω,t

2λlω,tw
2
ω,kh

2
k,t

)
+ d

=: f +KL(W,0), (31)

where 0 denotes a set of all the auxiliary variables, {λlω,t },
{γ lk,ω,t }, {ηω,t }, {β

l
k,ω,t } and {θk,ω,t }, and d denotes a term

that does not depend onW.
By using Lemma 2, Jensen’s inequality and the concave

inequality, we can also derive a majorizer for the case of the
IS divergence in a similar manner:

fIS (W)

=

∑
l

αlDIS

(
Sl
∣∣∣∣WlHl

WH
�M

)
(32)

=

∑
l

αl
∑
ω,t

( slω,tgω,t
mω,tglω,t

− log gω,t + log glω,t

)
+ d ′

≤

∑
l

αl
∑
k,ω,t

(
λlω,ts

l
ω,tw

2
ω,kh

2
k,t

2mω,tβk,ω,t
+

slω,tθ
l
k,ω,t

3

2λlω,tmω,twlω,k
2hlk,t

2

− γk,ω,t log
wω,khk,t
γk,ω,t

+
wlω,kh

l
k,t

ηlω,t

)
+ d ′′

=: f +IS (W,0), (33)

where d ′ and d ′′ denote terms that do not depend onW.
These majorizers are particularly noteworthy in that they

can be minimized analytically with respect to wlω,k since they
are given as the sum of the reciprocal, logarithmic, first-order,
and second-order functions.

C. UPDATE RULES
We can obtain the update rules for wlω,k by setting the partial
derivatives of the above majorizers with respect to wlω,k at
zeros. Thus, the optimal update of wlω,k is given by the
positive solution of

αl

(∑
t

λlω,tmω,t

β lk,ω,t
hlk,t

2
)
wlω,k

4
− αl

(∑
t

slω,tγ
l
k,ω,t

)
wlω,k

2

+

(
αl
∑
t

slω,th
l
k,t

ηω,t
+

∑
l′:l′ 6=l

αl′
∑
t

sl
′

ω,th
l
k,t

ηω,t

)
wlω,k

3

−

(
αl
∑
t

mω,tθ
3
k,ω,t

λlω,th
l
k,t

2
+

∑
l′:l′ 6=l

αl′
∑
t

mω,tθ
3
k,ω,t

λl
′

ω,th
l
k,t

2

)
= 0

(34)

for the KL divergence case and(
αl
∑
t

λlω,ts
l
ω,th

l
k,t

2

mω,tβk,ω,t
+

∑
l′:l′ 6=l

αl′
∑
t

λl
′

ω,ts
l′
ω,th

l
k,t

2

mω,tβk,ω,t

)
wlω,k

4

−

(
αl
∑
t

γk,ω,t +
∑
l′:l′ 6=l

αl′
∑
t

γk,ω,t

)
wlω,k

2

+αl
∑
t

hlk,t
ηlω,t

wlω,k
3
− αl

∑
t

slω,tθ
l
k,ω,t

3

λω,tmω,thlk,t
2
= 0 (35)

for the IS divergence case. It is worth noting that since each
element ofW is isolated in a separate term in f +KL(W,0) and
f +IS (W,0), we can update each of the elements in parallel.
Thus, this algorithm is well suited to parallel implementa-
tions. Furthermore, since each of the update rules consists of a
negative zeroth-order term and a negative second-order term,
it turns out that there is only one positive solution, implying
that there is no need to solve a solution selection problem.
f +KL(W,0) is minimized with respect to the auxliary vari-

ables when the exact bounds of Eqs. (18), (20), (23), (25)
and (28) are achieved, namely when Eqs. (19), (22), (24),
(27), and (30) are achieved. The proposed basis training algo-
rithm with the KL divergence can therefore be summarized
as Algorithm 1. The algorithm with the IS divergence can be
developed in the same way.

VOLUME 8, 2020 227403
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Algorithm 1 Proposed Basis Training Algorithm With KL
Divergence
Require: S1, . . . ,SL , M
Compute B̃ and H̃ using NMF to solve Eq. (7) for all l.
Compute Ĥ using NMF to solve Eq. (8).
InitializeW by, for example,W← B̃.
Fix H at H← Ĥ.
while not converged do
Update 0 via Eqs. (19), (22), (24), (27), and (30).
UpdateW by solving Eq. (34).

end while
return B̃,W

D. TEST INFERENCE ALGORITHM
Let Y and 8 be the power and phase spectrograms of a test
mixture signal and let B̃ and W̃ be the pretrained basis matri-
ces. The test inference algorithm for the DNMF approach
consists of computing Ĥ by solving

Ĥ = argmin
H

D(Y|B̃H)+ µ||H||1, (36)

computing C1
, . . . ,CL using

Cl
=

W̃lĤl

W̃Ĥ
� Y, (37)

and performing the inverse STFT onCl
�8 for all l. Note that

the test inference algorithm for the standard NMF approach
corresponds to a special case where B̃ = W̃.

IV. EXPERIMENTAL EVALUATIONS
A. SPEECH ENHANCEMENT TASK
First, we evaluated the effect of the proposed algorithm
in a speech enhancement task, namely l ∈ {s, n}. For
comparison, we tested (i) the standard supervised NMF
method [21] with Euclidean distance (SNMF_EU), KL diver-
gence (SNMF_KL), and IS divergence (SNMF_IS); (ii)
DNMF using the MU-based basis training algorithm [11]
with KL divergence (DNMF_MU_KL) and Euclidean
distance (DNMF_MU_EU); and (iii) DNMF using the
proposed basis training algorithm with KL divergence
(DNMF_MM_KL) and IS divergence (DNMF_MM_IS).
Note that we have excluded DNMF_MU_IS from the base-
lines since it was not studied in [11]. Also note that the results
for DNMF_MM_EU are not provided. This is because we
have yet to come upwith an auxiliary functionwith a tractable
form for the Euclidean distance case.

1) DATASET AND EXPERIMENTAL SETTINGS
We constructed the training and test datasets using speech
signals excerpted from the Wall Street Journal (WSJ-0) cor-
pus [22] and noise signals excerpted from the CHiME4 back-
ground noise database [23], which includes four types of
noise recorded in a bus, cafe, pedestrian area, and street,
respectively. The training dataset consisted of 600 utterances,

each of which was created bymixing randomly selected utter-
ances from si_tr_s and noise signals with signal-to-noise
ratios (SNRs) set at {−5, 0, 5}dB. In the same way, we also
created a validation dataset consisting of 90 utterances. Each
of the four test datasets consisted of 100 utterances, half
of which we created using speech signals in si_tr_s and
the other half using speech signals of different speakers in
si_dt_05. The SNRs for three of the four test datasets were
set at {−5, 0, 5} dB. and those for the remaining dataset were
randomly set between [−10, 10] dB.

All the audio signals were monaural and downsampled to
16 kHz. The STFT was computed using a Hanning window
that was 32-ms long with a 16-ms overlap. We used the same
basis number k for speech and noise, i.e., K s

= K n
= K .

In this task, we tested K = {25, 50, 100}. For K = 100,
we evaluated the effectiveness of sparse regularization in the
case of a large number of basis numbers by setting µ =
{0, 0.5, 1, 5, 10}. SNMF_KL was run for 100 iterations. For
the DNMF algorithms, SNMF_KL was used for initializa-
tion. For the separation, the Wiener filter was constructed
using the trained basis and activation matrices obtained using
the standard NMF run for 100 iterations.

2) CONVERGENCE BEHAVIOR AND COMPUTATIONAL COST
We compared the convergence behaviors of the proposed
algorithms, DNMF_MU_EU and DNMF_MU_KL, within
the first 500 iterations. For all the algorithms, we used the
same initialization and evaluated the signal-to-distortion ratio
(SDR) [24] improvements. Two examples are shown in Fig. 2.
As can be seen from the example when tested on bus noise
with k = 100, DNMF_MU_EU and DNMF_MU_KL did not
decrease the objective functions monotonically. This indeed
shows that each update in the MU algorithms does not guar-
antee a decrease in the objective functions. It is also worth
noting that the objective function value does not directly
reflect the speech enhancement performance, as shown in the
experimental results when tested on street noise with k = 50.
According to the SDR results obtained with the validation
dataset as well as the setting in [11], in the following exper-
iments, we set the iteration number at 150 for the proposed
algorithms and 25 for the MU algorithms.

We compared the computational times of all the algorithms
with k = 50 using the training data with a length of about
one hour. The algorithms were implemented using MATLAB
and run on an Intel Xeon Gold 5120 @2.2GHz processor.
Table 1 shows the average computational time for updating
B or W at each iteration and that of the entire process. Note
that the total time of DNMF includes the time of computing B̃
for initialization and Ĥ. Note that the time complexity of the
proposed algorithm is O(�KTL2), whereas that of the stan-
dard NMF and DNMF algorithms with multiplicative update
rules is O(�KTL). Since L was 2 in the speech enhancement
task, it did not have a significant impact on the computation
time. Rather, the increase in the number of iterations in the
proposed algorithm led to an increase in the total computation
time.
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FIGURE 2. Convergence behavior and corresponding SDR improvements
obtained with each method in street noise with the K = 50 case (top) and
bus noise with basis number K = 100 case (bottom).

TABLE 1. Comparison of computational times [sec] with basis number
K = 50.

3) SPEECH ENHANCEMENT PERFORMANCE
The speech enhancement performance was numerically eval-
uated in terms of SDRs, signal-to-interference ratios (SIRs),

TABLE 2. SDR [dB] obtained with K = {25,50,100}, average over all the
test datasets (four types noise) with five random initializations. The
average input SDR was about 0.063 dB.

TABLE 3. From top to bottom: average SDRs, SIRs, SARs [dB] over four
types of noise with basis number K = 25.

and signal-to-artificial ratios (SARs) [24]. Table 2 shows
the average SDRs taken over all the test data with basis
number K = {25, 50, 100}. For each noise type with dif-
ferent k , we conducted 5 trials with different initializa-
tions. The average input SDR of the test data was about
0.063 dB. As Table 2 shows, increasing the bases did not
always lead to an improvement in speech enhancement per-
formance. Comparing the results of the standard NMF and
DNMF algorithms, we found that the latter outperformed
the former. This indicates the effectiveness of the ability to
learn discriminative bases. Furthermore, the proposed algo-
rithm performed best among all the algorithms based on
the same divergence measure. Table 3 shows the average
SDRs, SIRs, and SARs evaluated using K = 25 with various
input SNRs. These results were averaged over the four noise
types. As the results show, DNMF_MM_KL performed best
among all the algorithms in terms of the SDR and SIR.
Specifically, it achieved about 1.2-dB improvements over
DNMF_MU_EU and DNMF_MU_KL, and about 1.7-dB
improvements over SNMF_KL. This shows that the proposed
algorithmwith theKL divergence criterion had a better ability
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TABLE 4. SDR (top) and SIR (bottom) improvement [dB] achieved for the four-source separation task averaged over five random initializations. Bold font
shows the highest average score for each song.

TABLE 5. SDR [dB] obtained with µ = {0,0.5,1,5,10} and K = 100
average over all the test datasets with 5 random initializations. Bold font
shows the highest score for each method.

to learn discriminative bases than the baseline algorithms did.
However, the SARs obtained with the proposed algorithms
tended to be lower than those obtained with the baseline
algorithms.

We also evaluated the effectiveness of sparse regular-
ization. The results are shown in Table 5. We found
that µ = 0.5 achieved the best score for each method
except for DNMF_MM_IS, where the best performance
was obtainedwithout sparse regularization. DNMF_MM_KL
outperformed the other methods regardless of the sparse reg-
ularization.

B. SINGLE-CHANNEL SOURCE SEPARATION
We also evaluated the performance of the proposed algo-
rithms in source separation tasks.

1) DATASET AND EXPERIMENTAL CONDITIONS
We excerpted five recordings from Demixing Secrets Dataset
100 (DSD100) [25], which was used in the SiSEC 2016MUS
task. Each of the recordings consisted of four sources, namely
bass, drums, vocals, and the other. The task was thus a
four-source separation problem, namely αl = 1, l =
{1, 2, 3, 4}. Each of the recordings was about four to five
minutes long. We divided each recording into two segments,
namely a training data segment and a test data segment.

Here, we conducted two experiments. In the first experi-
ment, we trained the basis matrix separately using the training
data segment of each recording and tested on the test data
segment. In the second experiment, we trained a shared basis
matrix using the collection of the training data segments of
all the recordings and tested on the test data segment of
each recording. As in the speech enhancement task, we used
monaural audio signals and downsampled them to 16 kHz.
The STFT was computed using a 256-ms long Hanning win-
dowwith 1/2window overlap. Considering the characteristics
of the four sources, we set the basis number at [10, 10, 15, 15]
for bass, drums, vocals, and other, respectively, for the first
experiment and [20, 20, 50, 50] for the second experiment.
For each experiment, we also ran five trails with random
initialization and evaluated the average SDR and SIR scores.
SNMF_KLwas run for 100 iterations and was used as the ini-
tialization for the DNMF algorithms. In the source separation
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experiments, we set the number of iterations for training W̃,
at 25.

2) EXPERIMENTAL RESULTS
Fig. 3 shows an example of the convergence behavior of
the proposed algorithms. Table 4 shows the SDR and SIR
improvements [dB]. As the results show, the proposed algo-
rithm with KL divergence outperformed SNMF_KL for most
of the test data. It is interesting to note that even though in
the first experiment the standard NMF was relatively advan-
tageous as regards the training condition, DNMF_MM_KL
still obtained higher SDR and SIR scores.

FIGURE 3. Example of convergence behavior of proposed algorithms for
source separation task with shared basis matrix.

In the speech enhancement task, we confirmed that the pro-
posed algorithm performed slightly better than the standard
NMFmethod under the IS divergence criterion. However, this
was found not to be the case for the source separation task.
This implies that the discriminative basis training and/or MM
strategies were less effective for the IS divergence than for the
KL divergence. The reason for this will be examined more
closely in our future work.

V. CONCLUSION
DNMF is noteworthy in that it directly uses the reconstruction
errors of separated signals as the training criteria, which
eliminates the inconsistency between the objctive functions
for training and separation in the conventional NMF method
and can increase the discriminative power of the trained
basis. However, such training criteria cause difficulty in
optimization. This paper derived a novel majorizer for the
objective function of DNMF and successfully developed an
MM algorithm that is guaranteed to converge to a stationary
point. Experimental results showed that the proposed algo-
rithm with the KL divergence criterion achieved significant
improvements in terms of the SDR and SIR over standard
NMF and DNMF using the multiplicative update algorithm.
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