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This letter proposes a multichannel source separation technique, the mul-
tichannel variational autoencoder (MVAE) method, which uses a condi-
tional VAE (CVAE) to model and estimate the power spectrograms of the
sources in a mixture. By training the CVAE using the spectrograms of
training examples with source-class labels, we can use the trained de-
coder distribution as a universal generative model capable of generating
spectrograms conditioned on a specified class index. By treating the la-
tent space variables and the class index as the unknown parameters of
this generative model, we can develop a convergence-guaranteed algo-
rithm for supervised determined source separation that consists of iter-
atively estimating the power spectrograms of the underlying sources, as
well as the separation matrices. In experimental evaluations, our MVAE
produced better separation performance than a baseline method.

1 Introduction

Blind source separation (BSS) is a technique for separating out individual
source signals from microphone array inputs when the transfer character-
istics between the sources and microphones are unknown. The frequency-
domain BSS approach provides the flexibility of allowing us to utilize
various models for the time-frequency representations of source signals
and array responses. For example, independent vector analysis (IVA) (Kim,
Eltoft, & Lee, 2006; Hiroe, 2006) allows us to efficiently solve frequency-wise
source separation and permutation alignment in a joint manner by assum-
ing that the magnitudes of the frequency components originating from the
same source tend to vary coherently over time.
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With a different approach, multichannel extensions of nonnegative ma-
trix factorization (NMF) have attracted a lot of attention in recent years
(Ozerov & Févotte, 2010; Kameoka, Yoshioka, Hamamura, Le Roux, &
Kashino, 2010; Sawada, Kameoka, Araki, & Ueda, 2013; Kitamura, Ono,
Sawada, Kameoka, & Saruwatari, 2016, 2017). NMF was originally applied
to music transcription and monaural source separation tasks (Smaragdis,
2003; Févotte, Bertin, & Durrieu, 2009). The idea is to approximate the
power (or magnitude) spectrogram of a mixture signal, interpreted as a non-
negative matrix, as a product of two nonnegative matrices. This amounts to
assuming that the power spectrum of a mixture signal observed at each time
frame can be approximated by a linear sum of a limited number of basis
spectra scaled by time-varying amplitudes. Multichannel NMF (MNMF) is
an extension of this approach to a multichannel case to allow the use of spa-
tial information as an additional clue to separation. It can also be viewed as
an extension of frequency-domain BSS that allows the use of spectral tem-
plates as a clue for jointly solving frequency-wise source separation and
permutation alignment.

The original MNMF (Ozerov & Févotte, 2010) was formulated under a
general problem setting where sources can outnumber microphones and
a determined version of MNMF was subsequently proposed (Kameoka
et al., 2010). While the determined version is applicable only to determined
cases, it allows the implementation of a significantly faster algorithm than
the general version. The determined MNMF framework was later called
“independent low-rank matrix analysis (ILRMA)” (Kitamura et al., 2017).
Kitamura et al. (2016) discussed the theoretical relation of MNMF to IVA,
which has naturally allowed for the incorporation of the fast update rule of
the separation matrix developed for IVA, called “iterative projection (IP)”
(Ono, 2011), into the parameter optimization process in ILRMA. It has been
shown that this has contributed not only to accelerating the entire opti-
mization process but also to improving the separation performance. One
important feature of ILRMA is that the log likelihood to be maximized is
guaranteed to be nondecreasing at each iteration of the algorithm. How-
ever, one drawback is that it can fail to work for sources with spectrograms
that do not comply with the NMF model.

As an alternative to the NMF model, some attempts have recently been
made to use deep neural networks (DNNs) for modeling the spectrograms
of sources for multichannel source separation (Nugraha, Liutkus, & Vin-
cent, 2016; Mogami et al., 2018). The idea is to replace the process for esti-
mating the power spectra of source signals in a source separation algorithm
with the forward computations of pretrained DNNs. This can be viewed as
a process of refining the estimates of the power spectra of the source sig-
nals at each iteration of the algorithm. While this approach is particularly
appealing in that it can take advantage of the strong representation power
of DNNs for estimating the power spectra of source signals, one weakness
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is that unlike ILRMA, the log likelihood is not guaranteed to be nondecreas-
ing at each iteration of the algorithm.

To address the drawbacks of the methods mentioned above, we pro-
pose a multichannel source separation method using variational autoen-
coders (VAEs) (Kingma & Welling, 2014; Kingma, Rezendey, Mohamedy,
& Welling, 2014) for source spectrogram modeling. It should be noted that
a preprint paper on this work has already been made publicly available
(Kameoka, Li, Inoue, & Makino, 2018). While there have recently been some
attempts to apply VAEs to monaural and multichannel speech enhance-
ment (Bando, Mimura, Itoyama, Yoshii, & Kawahara, 2018; Leglaive, Girin,
& Horaud, 2018, 2019; Sekiguchi, Bando, Yoshii, & Kawahara, 2018), to the
best of our knowledge, our work is the first to propose the application of
VAEs to multichannel source separation.

2 Problem Formulation

We consider a situation where J source signals are captured by I micro-
phones. Let xi( f, n) and s j( f, n) be the short-time Fourier transform (STFT)
coefficients of the signal observed at the ith microphone and the jth source
signal, where f and n are the frequency and time indices, respectively. We
denote the vectors containing x1( f, n), . . . , xI( f, n) and s1( f, n), . . . , sJ( f, n)
by

x( f, n) = [x1( f, n), . . . , xI( f, n)]T ∈ C
I, (2.1)

s( f, n) = [s1( f, n), . . . , sJ( f, n)]T ∈ C
J, (2.2)

where (·)T denotes transpose. When the length of the acoustic impulse re-
sponse from a source to a microphone is sufficiently shorter than the frame
length of the STFT, x( f, n) can be approximated fairly well by an instanta-
neous mixture in the frequency domain,

x( f, n) = A( f )s( f, n), (2.3)

where A( f ) is called a mixing matrix. In a particular case where I = J and
A( f ) is invertible, we can use a separation system of the form

s( f, n) = WH( f )x( f, n), (2.4)

W( f ) = [w1( f ), . . . , wI( f )], (2.5)

to describe the relationship between x( f, n) and s( f, n) where WH( f ) =
A−1( f ) is called the separation matrix. (·)H denotes Hermitian transpose.
The aim of BSS methods is to estimate WH( f ) solely from the observations
x( f, n).
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Let us now assume that s j( f, n) independently follows a zero-mean
complex gaussian distribution with power spectral density v j( f, n) =
E[|s j( f, n)|2]:

s j( f, n) ∼ NC(s j( f, n)|0, v j( f, n)). (2.6)

Equation 2.6 is usually called the local gaussian model (LGM) (Févotte &
Cardoso, 2005; Vincent, Arberet, & Gribonval, 2009). When s j( f, n) and
s j′ ( f, n) ( j �= j′) are independent, s( f, n) follows

s( f, n) ∼ NC(s( f, n)|0, V( f, n)), (2.7)

where V( f, n) is a diagonal matrix with diagonal entries v1( f, n), . . . ,
vI( f, n). From 2.4 and 2.6, we can show that x( f, n) follows

x( f, n) ∼ NC(x( f, n)|0, (WH( f ))−1V( f, n)W( f )−1). (2.8)

Hence, the log likelihood of the separation matrices W = {W( f )} f given the
observed mixture signals X = {x( f, n)} f,n is given by

log p(X |W,V ) c= 2N
∑

f

log | det WH( f )|

−
∑
f,n

∑
j

(
log v j( f, n) +

|wH
j ( f )x( f, n)|2
v j( f, n)

)
, (2.9)

where c= denotes equality up to constant terms. If we individually treat
v j( f, n) as a free parameter, all the variables in equation 2.9 will be in-
dexed by frequency f . The optimization problem will thus be split into
frequency-wise source separation problems. Under this problem setting,
the permutation of the separated components in each frequency cannot be
uniquely determined. Thus, we usually need to group together the sepa-
rated components of different frequency bins that originate from the same
source after we obtain W . This process is called permutation alignment.
However, it is preferable to solve permutation alignment and source sep-
aration jointly since the clues used for permutation alignment can also be
helpful for source separation. If there is a certain assumption, constraint,
or structure that we can incorporate into v j( f, n), it can help eliminate
the permutation ambiguity during the estimation of W . One such exam-
ple is the NMF model, which expresses v j( f, n) as the linear sum of spec-
tral templates: b j,1( f ), . . . , b j,Kj ( f ) ≥ 0 scaled by time-varying magnitudes
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h j,1(n), . . . , h j,Kj (n) ≥ 0:

v j( f, n) =
Kj∑

k=1

b j,k( f )h j,k(n). (2.10)

ILRMA is a BSS framework that incorporates this model into the log like-
lihood, equation 2.9 (Kameoka et al., 2010; Kitamura et al., 2016, 2017).
Here, we consider a particular case where Kj = 1 and b j,k( f ) = 1 for all
j in equation 2.10, which means each source has only one flat-shaped
spectral template. Under this constraint, we can show that both assum-
ing s j(0, n), . . . , s j(F, n) independently follow equation 2.6 and assuming

the norm r j(n) =
√∑

f |s j( f, n)|2 follows a complex gaussian distribution

with time-varying variance h j(n) result in the same log likelihood (Ozerov
& Kameoka, 2018). This is analogous to the assumption employed by IVA
where the norm r j(n) is assumed to follow a supergaussian distribution. Ki-
tamura et al. (2016) showed that ILRMA can significantly outperform IVA
in terms of source separation ability. This fact implies that within the LGM-
based BSS framework, the stronger the representation power of a power
spectrogram model becomes, the better the source separation performance
we can expect to obtain.

3 Related Work

3.1 ILRMA. The optimization algorithm of ILRMA consists of itera-
tively updating W , B = {b j,k( f )} j,k, f and H = {h j,k(n)} j,k,n so that equation
2.9 is nondecreasing at each iteration (Kameoka et al., 2010; Kitamura et al.,
2016, 2017). To update W , we can use the natural gradient method or IP. The
IP-based update rule for W (Ono, 2011) is given as

w j( f ) ← (WH( f )� j( f ))−1e j, (3.1)

w j( f ) ← w j( f )

wH
j ( f )� j( f )w j( f )

, (3.2)

where � j( f ) = 1
N

∑
n x( f, n)xH( f, n)/v j( f, n) and e j denotes the jth col-

umn of the I × I identity matrix. To update B and H, we can em-
ploy the expectation-maximization (EM) algorithm or the majorization-
minimization (MM) algorithm. The MM-based update rules for B and H
can be derived (Kameoka, Goto, & Sagayama, 2006; Nakano, Kameoka, Le
Roux, Ono, & Sagayama, 2010; Févotte & Idier, 2011) as

b j,k( f ) ← b j,k( f )

√√√√
∑

n |y j( f, n)|2h j,k(n)/v2
j ( f, n)∑

n h j,k(n)/v j( f, n)
, (3.3)
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Figure 1: Example of the NMF models optimized using ILRMA (top) and the
spectrograms of the corresponding source signals (bottom).

h j,k(n) ← h j,k(n)

√√√√
∑

f |y j( f, n)|2b j,k( f )/v2
j ( f, n)∑

f b j,k( f )/v j( f, n)
, (3.4)

where y j( f, n) = wH
j ( f )x( f, n).

One important feature of ILRMA is that the log likelihood, equation 2.9,
is nondecreasing at each iteration of the algorithm and is shown experi-
mentally to converge quickly. However, one limitation is that since v j( f, n)
is restricted to equation 2.10, it can fail to work for sources with spectro-
grams that do not follow equation 2.10. Figure 1 shows an example of the
NMF model optimally fitted to a speech spectrogram. As can be seen from
this example, there is still plenty of room for improvement in the model
design.

3.2 DNN Approach. As an alternative to the NMF model, some at-
tempts have recently been made to combine deep neural networks (DNNs)
with the LGM-based multichannel source separation framework (Nugraha
et al., 2016; Mogami et al., 2018). Nugraha et al. (2016) and Mogami et al.
(2018) propose algorithms where v j( f, n) is updated at each iteration to
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the output of pretrained DNNs. In particular, with the method in Mogami
et al. (2018), a different DNN is trained for each source, and the jth DNN
is trained so that it produces only spectra related to source j in noisy input
spectra,

ṽ j(n) ← DNN j(ỹ j(n)) (n = 1, . . . , N), (3.5)

where DNN j(·) indicates the output of the pretrained DNN for source
j, ỹ j(n) = {|y j( f, n ± n′)|} f,n′ denotes the magnitude spectra of the esti-
mate of the jth separated signal around the nth time frame, and ṽ j(n) =
{√v j( f, n)} f . Equation 3.5 can thus be seen as a process of refining the mag-
nitude spectra of the separated signals according to the training examples
of the known sources.

While this approach is noteworthy in that it can exploit the benefits of
the representation power of DNNs for source power spectrum modeling,
one drawback is that updating v j( f, n) in this way does not guarantee an
increase in the log likelihood.

3.3 Source Separation Using Deep Generative Models. It is worth not-
ing that there have been some attempts to apply deep generative models,
including VAEs (Kingma & Welling, 2014; Kingma et al., 2014), and gen-
erative adversarial networks (GANs; Goodfellow et al., 2014) to monaural
speech enhancement and source separation (Bando et al., 2018; Subakan &
Smaragdis, 2018; Leglaive et al., 2018). As far as we know, their applica-
tions to multichannel source separation had yet to be proposed when our
preprint paper on this work (Kameoka et al., 2018) was first made publicly
available. Recently, it has been brought to our attention that several papers
on applications of VAEs to multichannel speech enhancement have subse-
quently been published by different authors (Sekiguchi, Bando, Yoshii, &
Kawahara, 2018; Leglaive et al., 2019). These methods are designed to en-
hance the speech of a particular speaker by using a VAE to model the spec-
trogram of that speaker. Hence, one limitation of these methods is that we
must know which speaker is present in a test mixture.

4 Proposed Method

To address the limitations and drawbacks of the conventional methods, this
letter proposes a multichannel source separation method using CVAEs for
source spectrogram modeling. We briefly review the idea behind the VAEs
and CVAEs in section 4.1 and present the proposed source separation al-
gorithm in section 4.2, which we call the multichannel CVAE (MCVAE) or,
more simply, the multichannel VAE (MVAE).

4.1 Variational Autoencoder. Variational autoencoders (VAEs) (Kin-
gma & Welling, 2014; Kingma et al., 2014) are stochastic neural network
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models consisting of encoder and decoder networks. The encoder network
generates a set of parameters for the conditional distribution qφ (z|s) of a la-
tent space variable z given input data s, whereas the decoder network gen-
erates a set of parameters for the conditional distribution pθ (s|z) of the data
s given the latent space variable z. Given a training data set S = {sm}M

m=1,
VAEs learn the parameters of the entire network so that the encoder distri-
bution qφ (z|s) becomes consistent with the posterior pθ (z|s) ∝ pθ (s|z)p(z).
By using Jensen’s inequality, the log marginal distribution of the data s can
be lower-bounded by

log pθ (s) = log
∫

qφ (z|s)
pθ (s|z)p(z)

qφ (z|s)
dz

≥
∫

qφ (z|s) log
pθ (s|z)p(z)

qφ (z|s)
dz

= Ez∼qφ (z|s)[log pθ (s|z)] − KL[qφ (z|s)‖p(z)], (4.1)

where the difference between the left- and right-hand sides of equation 4.1
is given by

log pθ (s) −
∫

qφ (z|s) log
pθ (s|z)p(z)

qφ (z|s)
dz

=
∫

qφ (z|s) log
pθ (s)qφ (z|s)

pθ (s, z)
dz =

∫
qφ (z|s) log

qφ (z|s)
pθ (z|s)

dz,

(4.2)

which is equal to the Kullback-Leibler divergence between qφ (z|s) and
pθ (z|s). Obviously this is minimized when

qφ (z|s) = pθ (z|s). (4.3)

This means we can make qφ (z|s) and pθ (z|s) ∝ pθ (s|z)p(z) consistent by
maximizing the lower bound of equation 4.1. One typical way of model-
ing qφ (z|s), pθ (s|z) and p(z) is to assume gaussian distributions

qφ (z|s) = N (z|μφ (s), diag(σ2
φ (s))), (4.4)

pθ (s|z) = N (s|μθ (z), diag(σ2
θ (z))), (4.5)

p(z) = N (z|0, I), (4.6)

where μφ (s) and σ2
φ (s) are the outputs of an encoder network with param-

eter φ, and μθ (z) and σ2
θ (z) are the outputs of a decoder network with

parameter θ . Here, it should be noted that to compute the first term of
this objective function, we must compute the expectation with respect to
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z ∼ qφ (z|x). Although this expectation cannot be expressed in an analytical
form, we can compute it by using a Monte Carlo approximation. However,
simply sampling z from qφ (z|x) does not work, since once z is sampled,
it is no longer a function of φ, which makes it impossible to evaluate the
gradient of the objective function with respect to φ. Fortunately, by using
a reparameterization z = μφ (x) + σφ (x) 
 ε with ε ∼ N (ε|0, I) where 
 in-
dicates the element-wise product, sampling z from qφ (z|x) can be replaced
by sampling ε from the distribution, which is independent of φ. This al-
lows us to compute the gradient of the first term of the objective function
with respect to φ by using a Monte Carlo approximation of the expectation
Ez∼qφ (z|x)[·]. This technique is called a reparameterization trick. By using this
reparameterization, the first term of the lower bound can be written as

Ez∼qφ (z|s)[log pθ (s|z)]

= Eε∼N (ε|0,I)

[
− 1

2

∑
n

log 2π [σ2
θ (μφ (s) + σφ (s) 
 ε)]n

−
∑

n

(sn − [μθ (μφ (s) + σφ (s) 
 ε)]n)2

2[σ2
θ (μφ (s) + σφ (s) 
 ε)]n

]
, (4.7)

where [·]n denotes the nth element of a vector. We can confirm from equa-
tion 4.7 that the second term reduces to a negative weighted squared er-
ror between s and μθ (μφ (s)) when ε = 0, which can be interpreted as an
autoencoder reconstruction error. On the other hand, the second term of
equation 4.1 is given as the negative KL divergence between qφ (z|s) and
p(z) = N (z|0, I). This term can be interpreted as a regularization term that
forces each element of the encoder output to be independent and normally
distributed.

Conditional VAEs (CVAEs; Kingma et al., 2014) are an extended version
of VAEs where the only difference is that the encoder and decoder networks
can take an auxiliary variable c as an additional input. With CVAEs, equa-
tions 4.4 and 4.5 are replaced with

qφ (z|s, c) = N (z|μφ (s, c), diag(σ2
φ (s, c))), (4.8)

pθ (s|z, c) = N (s|μθ (z, c), diag(σ2
θ (z, c))), (4.9)

and the variational lower bound to be maximized becomes

J (φ, θ ) = E(s,c)∼pD(s,c)
[
Ez∼q(z|s,c)[log p(s|z, c)] − KL[q(z|s, c)‖p(z)]

]
,

(4.10)

where E(s,c)∼pD(s,c)[·] denotes the sample mean over the training examples
{sm, cm}M

m=1.
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One notable feature of CVAEs is that they are able to learn a “disentan-
gled” latent representation underlying the data of interest. For example,
when a CVAE is trained using the MNIST data set of handwritten digits and
c as the digit class label, z and c are disentangled so that z represents the fac-
tors of variation corresponding to handwriting styles. We can thus generate
images of a desired digit with random handwriting styles from the trained
decoder by specifying c and randomly sampling z. Analogously, we would
be able to obtain a generative model that can represent the spectrograms
of a variety of sound sources if we could train a CVAE using class-labeled
training examples.

4.2 Multichannel VAE. Let S̃ = {s( f, n)} f,n be the complex spectrogram
of a particular sound source and c be the class label of that source. Here, we
assume that a class label comprises one or more categories, each consisting
of multiple classes. We thus represent c as a concatenation of one-hot vec-
tors, each of which is filled with 1 at the index of a class in a certain category
and with 0 everywhere else. For example, if we consider speaker identities
as the only class category, c will be represented as a single one-hot vector,
where each element is associated with a different speaker.

We now model the generative model of S̃ using a CVAE with an auxiliary
input c. So that the decoder distribution has the same form as the LGM,
equation 2.6, we define it as a zero-mean complex gaussian distribution,

pθ (S̃|z, c, g) = NC(S̃|0, g · diag(σ2
θ (z, c)))

=
∏
f,n

NC(s( f, n)|0, g · σ 2
θ ( f, n; z, c)), (4.11)

where σ 2
θ ( f, n; z, c) denotes the ( f, n)th element of the decoder output

σ2
θ (z, c) and g represents the global scale of the generated spectrogram. For

the encoder distribution qφ (z|S̃, c), we adopt a regular gaussian distribution

qφ (z|S̃, c) = NC(z|μφ (S̃, c), diag(σ2
φ (S̃, c)))

=
∏

k

N (z(k)|μφ (k; S̃, c), σ 2
φ (k; S̃, c)), (4.12)

where z(k), μφ (k; S̃, c), and σ 2
φ (k; S̃, c) represent the kth elements of the latent

space variable z and the encoder outputs μφ (S̃, c) and σ2
φ (S̃, c), respectively.

Given a set of labeled training examples {S̃m, cm}M
m=1, we train the decoder

and encoder NN parameters θ and φ, respectively, prior to source separa-
tion, using the training objective

J (φ, θ ) = E(S̃,c)∼pD(S̃,c)

[
Ez∼q(z|S̃,c)[log p(S̃|z, c)] − KL[q(z|S̃, c)‖p(z)]

]
,

(4.13)
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Figure 2: Illustration of the present CVAE.

where E(S̃,c)∼pD(S̃,c)[·] denotes the sample mean over the training examples
{S̃m, cm}M

m=1. Figure 2 shows the illustration of the present CVAE.
The trained decoder distribution pθ (S̃|z, c, g) can be used as a universal

generative model that is able to generate spectrograms of all the sources
involved in the training examples where the latent space variable z, the
auxiliary input c, and the global scale g can be interpreted as the model
parameters. According to the properties of CVAEs, we consider that the
CVAE training promotes disentanglement between z and c where z charac-
terizes the factors of intraclass variation, whereas c characterizes the factors
of categorical variation that represent source identities. Estimating c from a
test mixture corresponds to identifying which source is present in the mix-
ture. There are, however, certain cases where we know which sources are
present prior to separation. Thanks to the conditional modeling, we can also
use our model in such cases by simply fixing c at a specified index. We call
pθ (S̃|z, c, g) the CVAE source model.

Since the CVAE source model is given in the same form as the LGM
given by equation 2.6, we can develop a log likelihood that has the same
expression as equation 2.9 if we use pθ (S̃ j|z j, c j, g j ) to express the gen-
erative model of the complex spectrogram of source j where v j( f, n) =
g j · σ 2

θ ( f, n; z j, c j ). Hence, we can search for a stationary point of the log like-
lihood by iteratively updating the separation matrices W , the global scale
parameter G = {g j} j, and the VAE source model parameters � = {z j, c j} j so
that the log likelihood is guaranteed to be nondecreasing at each iteration.
We can use equation 3.1 and 3.2 to update W , backpropagation to update
�, and

g j ← 1
FN

∑
f,n

|y j( f, n)|2
σ 2

θ ( f, n; z j, c j )
, (4.14)

to update G where y j( f, n) = wH
j ( f )x( f, n). Note that equation 4.14 maxi-

mizes equation 2.9 with respect to g j when W and � are fixed.
The proposed algorithm is thus summarized as algorithm 1. Note that

we must take account of the sum-to-one constraints when updating c j. This
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can be easily implemented by inserting an appropriately designed softmax
layer that outputs c j,

c j = softmax(uj ), (4.15)

and treating uj as the parameter to be estimated instead.
The proposed MVAE is noteworthy in that it offers the advantages of the

conventional methods concurrently: (1) it takes full advantage of the strong
representation power of DNNs for source power spectrogram modeling,
(2) the log likelihood is guaranteed to be nondecreasing at each iteration
of the source separation algorithm, and (3) the criteria for CVAE training
and source separation are consistent, thanks to the consistency between the
expressions of the CVAE source model and the LGM. Figure 3 shows an
example of the CVAE source model fitted to the speech spectrogram shown
in Figure 1. We can confirm from this example that the CVAE source model
is able to approximate the speech spectrogram somewhat better than the
NMF model.

It is interesting to look at the differences between our method and the
recently proposed VAE-based multichannel speech enhancement methods
(Sekiguchi et al., 2018; Leglaive et al., 2019). The methods proposed in
Sekiguchi et al. (2018) and Leglaive et al. (2019) model the spectrogram of
a particular source to be enhanced using a regular VAE and express the
spectrograms of the other sources using the NMF model. This allows these
methods to handle semisupervised scenarios where interference sources are
unseen in the training set. However, one limitation is that the target source
to be enhanced must be specified prior to separation. With our method,
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Figure 3: Example of the optimized CVAE source models corresponding to the
source signals shown in Figure 1.

one limitation is that it can handle only supervised scenarios where audio
samples of all the sources in a test mixture are included in the training set.
However, if there is a sufficiently wide variety of sources in the training set,
our method can be applied even without being informed about which of the
sources in the training set are present in a test mixture. Our method can also
be flexibly adapted to a scenario where we know which sources are present
by simply specifying (instead of having it estimate) c j, thanks to the condi-
tional modeling. Another important feature of our model lies in its ability
to capture the time-frequency interdependence in the STFT coefficients of
each source thanks to the network design for the encoder and decoder, as
presented in the section 4.3.

4.3 Network Architectures. We propose designing the encoder and de-
coder networks using fully convolutional architectures to allow the encoder
to take a spectrogram as an input and allow the decoder to output a spec-
trogram of the same length instead of a single-frame spectrum. This allows
the networks to capture time dependencies in spectral sequences. Although
RNN-based architectures are a natural choice for modeling time series data,
RNNs are unsuited to parallel implementations, and so both the training
and conversion processes can be computationally demanding. Motivated
by the recent success of sequential modeling using convolutional neural
networks (CNNs) in the field of natural language processing (Dauphin, Fan,
Auli, & Grangier, 2017) and the fact that CNNs are more suited to parallel
implementations than RNNs, we use CNN-based architectures to design
the encoder and decoder, as detailed below.

As detailed in Figure 4, we use 1D CNNs to design the encoder and the
decoder networks by treating S̃ as an image of size 1 × N with F channels.
Specifically, we use a gated CNN (Dauphin et al., 2017), which was origi-
nally introduced to model word sequences for language modeling and was
shown to outperform long short-term memory (LSTM) language models
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Figure 4: Network architectures of the encoder and decoder. Here, the inputs
and outputs of the encoder and decoder are interpreted as images, where h, w,
and c denote the height, width, and channel number, respectively. Conv, Batch
norm, GLU, and Deconv denote convolution, batch normalization, gated lin-
ear unit, and transposed convolution layers, respectively. k, s, and c denote the
kernel size, stride size, and output channel number of a convolution layer, re-
spectively. c is assumed to be appended along the channel dimension to the
output of the previous layer. Note that all the networks are fully convolutional
with no fully connected layers, thus allowing inputs to have arbitrary lengths.

trained in a similar setting. We previously employed gated CNN archi-
tectures for voice conversion (Kaneko, Kameoka, Hiramatsu, & Kashino,
2017; Kaneko & Kameoka, 2017; Kameoka, Kaneko, Tanaka, & Hojo, 2018)
and monaural audio source separation (Li & Kameoka, 2018), and have al-
ready confirmed their effectiveness. The output of the GLU block used in
the present model is defined as

GLU(X) = B1(L1(X)) 
 sigmoid(B2(L2(X))), (4.16)

where 
 denotes elementwise multiplication, X is the layer input, L1 and
L2 denote convolution layers, B1 and B2 denote batch normalization layers,
and sigmoid denotes a sigmoid gate function. Similar to LSTMs, the output
gate sigmoid(B2(L2(X))) multiplies each element of B1(L1(X)) and controls
what information should be propagated through the hierarchy of layers.
At each GLU block in the encoder and decoder, a broadcast version of c is
appended along the channel dimension to the output of the previous GLU
block. The decoder network is devised in the same way as the encoder net-
work with the only difference being that μθ = 0. It should be noted that
the entire architecture is fully convolutional with no fully connected layers.
The trained decoder can therefore be used as a generative model of spectro-
grams with arbitrary lengths. This is particularly convenient when design-
ing source separation systems since they can allow signals of any length.



Supervised Determined Source Separation 1905

Figure 5: Simulated room configuration.

5 Experiments

5.1 Experimental Settings. To confirm the effect of the incorporation of
the CVAE source model, we conducted experiments involving a supervised
determined source separation task using speech mixtures. We excerpted
speech utterances from the Voice Conversion Challenge (VCC) 2018 data
set (Lorenzo-Trueba et al., 2018), which consists of recordings of six female
and six male U.S. English speakers. Specifically, we used the utterances of
two female speakers, SF1 and SF2, and two male speakers, SM1 and SM2,
for CVAE training and source separation. We considered speaker identi-
ties as the only source class category. Thus, c was a four-dimensional one-
hot vector. The audio files for each speaker were manually segmented into
116 short sentences (each about 7 minutes long) where 81 and 35 sentences
(about 5 and 2 minutes long, respectively) were provided as training and
evaluation sets, respectively.

We used two-channel recordings of two sources as the test data, which
we synthesized using the simulated room impulse responses (RIRs) gener-
ated using the image method (Allen & Berkley, 1979) and the real RIRs mea-
sured in an anechoic room (ANE) and an echo room (E2A). Figure 5 shows
the two-dimensional configuration of the room for obtaining the simulated
RIRs. ◦ and × represent the positions of microphones and sources, respec-
tively. The reverberation time (RT60) (Schroeder, 1965) of the simulated RIRs
could be controlled according to the setting of the reflection coefficient of
the walls. To simulate anechoic and echoic environments, we created test
signals with the reflection coefficients set at 0.20 and 0.80, respectively. The
corresponding RT60s were 78 ms and 351 ms, respectively. For the measured
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RIRs, we used the data included in the RWCP Sound Scene Database in Real
Acoustic Environments (Nakamura, Hiyane, Asano, & Endo, 1999). RT60 of
the anechoic room (ANE) and the echo room (E2A) were 173 ms and 225 ms,
respectively.

We generated 10 speech mixtures for each speaker pair, SF1 + SF2, SF1
+ SM1, SM1 + SM2, and SF2 + SM2. Hence, there were 40 test signals for
each recording condition, each of which was about 4 to 7 s long. All the
speech signals were resampled at 16,000 Hz. The STFT frame length was
set at 256 ms, and a Hamming window was used with an overlap length of
128 ms.

5.2 Baseline and Proposed Methods. We chose ILRMA(Kameoka et al.,
2010; Kitamura et al., 2016, 2017) and the recently proposed DNN approach,
the independent deeply learned matrix analysis (IDLMA; Mogami et al.,
2018) as baseline methods for comparison. With ILRMA, we set Kj at 10 for
all j. The IDLMA algorithm can be implemented by replacing the steps b)
and c) in our algorithm with equation 3.5. Thus, ILRMA, IDLMA, and the
proposed method differ only in the way v j( f, n) is modeled and estimated,
and so the comparisons with the baseline methods would demonstrate the
effect of our model. For a fair comparison, we used the same training data
as those described in section 5.1 to train the DNN in equation 3.5. Accord-
ing to the settings in Mogami et al. (2018), we designed the DNN using four
fully connected layers, each of which had 2048 units and was followed by
a rectified linear unit (ReLU). The source separation algorithms were run
for 40 iterations for the proposed method and 100 iterations for the baseline
methods. Although the original ILRMA is a fully blind (unsupervised) ap-
proach, we also tested its supervised version for a fair comparison where
the basis spectra were pretrained using the same training data. Specifically,
we applied the NMF algorithm, which consisted of performing equations
3.3 and 3.4, to the audio samples of each source to obtain the basis spec-
tra. We then constructed B by concatenating the obtained basis spectra of
each source. Here we refer to the supervised version of ILRMA as sILRMA.
For the proposed method, W was initialized using ILRMA run for 30 it-
erations, and Adam optimization (Kingma & Ba, 2015) was used for CVAE
training and the estimation of � in the source separation algorithm. The net-
work configuration we used for the proposed method is shown in detail in
Figure 4.

5.3 Results. To evaluate the source separation performance, we took the
averages of the signal-to-distortion ratio (SDR), signal-to-interference ratio
(SIR), and signal-to-artifact ratio (SAR; Vincent, Gribonval, & Févotte, 2006)
of the separated signals obtained with the baseline and proposed methods
using 10 test signals for each speaker pair. Figures 6 to 9 show the average
SDRs, SIRs, and SARs obtained with the baseline and proposed methods
under each recording condition. As the results show, the proposed method
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Figure 6: Average SDRs, SIRs, and SARs obtained with the baseline and pro-
posed methods under a simulated recording condition with RT60 of 78 ms.
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Figure 7: Average SDRs, SIRs, and SARs obtained with the baseline and pro-
posed methods under a simulated recording condition with RT60 of 351 ms.
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Figure 8: Average SDRs, SIRs, and SARs obtained with the baseline and pro-
posed methods under the ANE recording condition with RT60 of 173 ms.
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Figure 9: Average SDRs, SIRs, and SARs obtained with the baseline and pro-
posed methods under the E2A recording condition with RT60 of 225 ms.
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significantly outperformed the baseline methods for most of the test data
in terms of SDR, revealing the advantage of the proposed approach. (Au-
dio samples are provided at http://www.kecl.ntt.co.jp/people/kameoka
.hirokazu/Demos/mvae-ass/.)

As can be seen from comparisons between the results in Figures 6 and 7
and those in Figures 8 and 9, there were noticeable performance degrada-
tions with both the baseline and proposed methods when the reverberation
became relatively long. We have recently successfully incorporated the idea
of jointly solving dereverberation and source separation (Kameoka et al.,
2010; Yoshioka, Nakatani, Miyoshi, & Okuno, 2011; Kagami, Kameoka, &
Yukawa, 2018) into the method to overcome these degradations (Inoue,
Kameoka, Li, Seki, & Makino, 2019).

6 Conclusion

This letter proposed a multichannel source separation technique, the multi-
channel variational autoencoder (MVAE) method. The method used VAEs
to model and estimate the power spectrograms of the sources in mixture
signals. The key features of the MVAE are that (1) it takes full advantage of
the strong representation power of deep neural networks for source power
spectrogram modeling, (2) the log likelihood is guaranteed to be nonde-
creasing at each iteration of the source separation algorithm, and (3) the
criteria for the VAE training and source separation are consistent, which
contributed to obtaining better separations than with conventional meth-
ods. While the MVAE method was formulated under determined mixing
conditions, it can be generalized so that it can also deal with underdeter-
mined cases (Seki, Kameoka, Li, Toda, & Takeda, 2018).
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