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ABSTRACT

Multi-frame Full-rank Spatial Covariance Analysis (mfFCA) is
a technique for a blind source separation method and can be
applied to reverberant underdetermined conditions where the
sources outnumber the microphones and the reverberation time
is long. This model, however, does not express all direct and
delayed source components in multi-frame observation vector.
This paper proposes a new model that takes into account accu-
rately the direct and delayed source components, by introducing
delay-wise spatial covariance matrices. We have then derived
new expectation-maximization and multiplicative update algo-
rithms for the proposed model. Experimental results show that
the proposed method performed better than the conventional
mfFCA for the task to separate three sources with two micro-
phones.

Index Terms— Blind source separation (BSS), full-rank spatial
covariance analysis (FCA), reverberation, expectation-maximization
(EM) algorithm, multiplicative update (MU) algorithm

1. INTRODUCTION

Blind Source Separation (BSS) aims to separate N sources from
M observed signals without prior information of source signals and
the mixing system [1–5]. Independent Component Analysis (ICA)
[6–8] is a basic BSS method and many extensions of ICA have been
studied [9]. However, they are basically applicable in determined
(N =M ) and overdetermined (N <M ) conditions. Full-rank Spa-
tial Covariance Analysis (FCA) [10–14], on the other hand, can also
be applied to underdetermined conditions (N>M ).

In a real room environment, it is necessary to perform BSS
taking reverberation into account. Applying blind dereverbera-
tion methods such as Weighted Prediction Error (WPE) [15] as a
preprocessing of BSS is helpful to reduce the adverse effects of
reverberation. However, WPE becomes much less effective when it
is applied to underdetermined conditions.

Researchers have proposed to incorporate delayed source com-
ponents in the FCA model [16–23]. Especially, multi-frame FCA
(mfFCA) [22, 23] models the source components spanning multiple
time frames and takes correlations into account between different
time frames. Figure 1 describes the difference between the orig-
inal FCA, conventional mfFCA, and the proposed modification of
mfFCA. In conventional mfFCA (mfFCAo), the multi-frame obser-
vation vector consists of one part of direct and delayed source com-
ponents (red arrows in Fig. 1). The other source components (pur-
ple arrows) are accounted for by a covariance matrix of the multi-
frame observation vector (see Subsection 2.2). Therefore, mfFCA
has introduced only an approximate optimization algorithm such as
Expectation-Maximization (EM) algorithm.

In this paper, we propose to modify mfFCA on how to model
source signals over multi-frames and derive optimization algorithms.
We improve the model of the observation signals by correctly includ-
ing the all direct and delayed source components in the multi-frame
observation signals. Owing to that, the parameters can be obtained
for each time lag. We then derived the update rules using the EM al-
gorithm and the Multiplicative Update (MU) algorithm, which can-
not be derived by the conventional mfFCA. Hereinafter, we call the
proposed method as mfFCA with all direct and delayed source com-
ponents (mfFCAa).

2. CONVENTIONAL METHODS

2.1. Full-rank Spatial Covariance Analysis (FCA)
We briefly review FCA [10]. Suppose that N sources are mixed and
observed by M microphones. In this paper, we will omit the fre-
quency bin index to simplify notations. We first apply a Short-Time
Fourier Transform (STFT) to the time-domain observed signals. The
observed signal xt at time frame t ∈ {1, . . . , T} is expressed as the
superimposition of N source components cnt:

xt =
∑N

n=1 cnt ∈ CM . (1)

The source components and the observation vector are modeled as

p(cnt | θ) = N (cnt | 0,Cnt), Cnt = sntAn, (2)

p(xt | θ) = N (xt | 0,Xt), Xt =
∑N

n=1 Cnt + βI (3)

with the set of parameters θ = {{snt}Tt=1,An}Nn=1, where N indi-
cates a zero-mean multivariate complex Gaussian distribution, snt ∈
R≥0 represents the time-variant power of source n at time frame t,
and An ∈ CM×M is the time-invariant spatial covariance matrix of
source n. Also, β is the noise power and I is the identity matrix.

In the FCA model, the optimization of parameters θ has been
proposed based on an EM [10] and MU [24] algorithms.

2.2. Multi-frame FCA with one part of direct and delayed
source components (mfFCAo)
To better model reverberation than FCA does, mfFCAo [22, 23]
treats a multi-frame vector for the observed signal

x̄t = [xT
t ,x

T
(t+l1)

, . . . ,xT
(t+lL)]

T ∈ CM(L+1), (4)

whereL = {0, l1, . . . , lL} is the set of time lags and L is the number
of time lags considered in mfFCAo. Analogously, a multi-frame
source component is defined as

c̄nt = [c
(0)T
nt , c

(l1)T
n(t+l1)

, . . . , c
(lL)T
n(t+lL)]

T ∈ CM(L+1). (5)

See Fig. 1 for an illustration of c̄nt with L = {0, 1, 2}.
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Fig. 1: Illustrations of FCA, mfFCA (denoted as mfFCAo), and the proposed mfFCAa.

In mfFCAo, it is assumed that c̄nt follows the zero mean Gaus-
sian distribution with covariance matrix C̄nt:

p(c̄nt | θ) = N (c̄nt | 0, C̄nt), (6)

where C̄nt ∈ CM(L+1)×M(L+1) is modeled as C̄nt = sntĀn with
snt ∈ R≥0 and

Ān =


A

(0)
n . . . A

(0,lL)
n

...
. . .

...
A

(lL,0)
n . . . A

(lL)
n

 . (7)

It is also assumed that the multi-frame observed signal x̄t follows

p(x̄t | θ) = N (x̄t | 0, X̄t). (8)

To establish the relation between the covariance matrices X̄t and
C̄nt, let us look at an example in Fig. 1. When L = {0, 1, 2}, x̄3

is affected by the red arrows c̄n3 and also affected by direct and
delayed components corresponding to the purple arrows. This rela-
tionship is modeled in mfFCAo as

X̄t =
∑N

n=1 C̄nt + D̄t + β Ī , (9)

D̄t =
∑N

n=1

∑L
i=1

(
↖i C̄n(t−li)+↘

i C̄n(t+li)

)
, (10)

where β is the noise power, Ī is the identity matrix, and↖iand↘iare
shift operators that diagonally shift the submatrices of size M ×M
(see [23] for the definition of this shift operator). The set of param-
eters of mfFCAo is θ = {{snt}Tt=1, Ān}Nn=1. In the mfFCAo paper,
the authors proposed an EM algorithm for estimating the parameters.
The update rule can be found in [22, 23].

2.3. Drawback of conventional mfFCAo
The drawback of conventional mfFCAo is that x̄t does not contain
all direct and delayed source components. For the sake of simplicity,
let’s consider the situation in Fig. 1. x̄3 contains the direct and de-
layed source components from sn1, sn2, sn3, sn4, and sn5. However,
in the conventional mfFCAo model, the direct and delayed source
components of purple arrows in Fig. 1 are modelled by D̄t in (9, 10),
not in x̄3. According to (10), D̄t is modeled by components with a
shifted C̄nt and contaminated with components of C̄nt. Therefore,
mfFCAo only uses an approximate optimization algorithms such as
the EM algorithm.

3. PROPOSED METHOD

We propose to modify mfFCAo by considering all source component
vectors affecting the multi-frame observation vector x̄t and model-
ing them with an appropriate Gaussian distribution. This modifica-
tion allows us to develop an EM and MU algorithms for mfFCAa,
unlike mfFCAo. We expect the proposed mfFCAa to improve sep-
aration performance and to allow faster convergence of parameter
optimization.

3.1. Model
We introduce a set of source component vectors, denoted as c̄

(k)
nt

(k ∈ K), such that it holds that

x̄t =
∑N

n=1

∑
k∈K c̄

(k)
nt ∈ CM(K+1), (11)

where K = {−kK , . . . ,−k1, 0, k1, . . . , kK} is a set of time lags
and K is the number of time lags considered in mfFCAa. To explain
the definition of c̄(k)nt , let us look at an example in Fig. 1 which de-
scribes the case where K = 2, K = {−2,−1, 0, 1, 2}, and t = 3.
In this case, x̄t ∈ CM(K+1) and c̄

(k)
nt (k ∈ K) in (11) are defined as

x̄t =

 xt

x(t+1)

x(t+2)

 , c̄
(−2)
nt =

c(2)nt

0
0

 , c̄
(−1)
nt =

 c
(1)
nt

c
(2)

n(t+1)

0

 ,

c̄
(0)
nt =

 c
(0)
nt

c
(1)

n(t+1)

c
(2)

n(t+2)

 , c̄
(1)
nt =

 0

c
(0)

n(t+1)

c
(1)

n(t+2)

 , c̄
(2)
nt =

 0
0

c
(0)

n(t+2)

 . (12)

Each of c̄(−2)
nt , c̄(−1)

nt , c̄(0)nt , c̄(1)nt , and c̄
(2)
nt corresponds to a colored

arrow in Fig. 1. Here, for example, the elements of c̄(1)n3 (green ar-
rows in Fig. 1) consist of the source components from sn4 into x4 or
x5, namely c

(0)
n4 or c(1)n5 . We then assume that c̄(k)nt follows a zero-

mean Gaussian distribution

p(c̄
(k)
nt | θ) = N (c̄

(k)
nt | 0, C̄

(k)
nt ) (13)

with covariance matrix C̄
(k)
nt = sn(t+k)Ā

(k)
n . Here snt ∈ R≥0 is

the time-variant power of source n at time frame t, and Ā
(k)
n ∈
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CM(K+1)×M(K+1) is a covariance matrix which encodes the time-
invariant spatial property from source n to M microphones and for
all considered time lags. Along with the definitions of the source
component vectors in (12), the covariance matrices Ā

(k)
n (k ∈ K)

should have the following structure:

Ā(−2)
n =

A(2),−2
n 0 0
0 ϵI 0
0 0 ϵI

 , Ā(−1)
n =

 A
(1),−1
n A

(1,2),−1
n 0

A
(2,1),−1
n A

(2),−1
n 0

0 0 ϵI

 ,

Ā
(0)
n =

 A
(0),0
n A

(0,1),0
n A

(0,2),0
n

A
(1,0),0
n A

(1),0
n A

(1,2),0
n

A
(2,0),0
n A

(2,1),0
n A

(2),0
n

 , (14)

Ā(1)
n =

ϵI 0 0

0 A
(0),1
n A

(0,1),1
n

0 A
(1,0),1
n A

(1),1
n

 , Ā(2)
n =

ϵI 0 0
0 ϵI 0

0 0 A
(0),2
n

 ,

where A
(k),∗
n and A

(k,k′),∗
n are block submatrices that should be

equal for arbitrary ∗, e.g., A(0),0
n = A

(0),1
n = A

(0),2
n , A(0,1),0

n =

A
(0,1),1
n . The constant ϵ is extremely low value, e.g., as ϵ = 10−6.

The conventional mfFCAo optimize only Ā
(0)
n . On the other hand,

our proposal mfFCAa can optimize Ā
(k)
n for each time lag k in K.

The parameters of mfFCAa to be optimized are

θ =
{
{snt}Tt=1, {Ā

(k)
n }k∈K

}N

n=1
. (15)

For model tractability, we assume that the multi-frame source com-
ponents c̄(k)nt are mutually independent:

p({c̄(k)nt }n,t,k | θ) =
N∏

n=1

T−kK∏
t=1

∏
k∈K

p(c̄
(k)
nt | θ). (16)

Then with the additive model (11), x̄t follows

p(x̄t | θ) = N (x̄t | 0, X̄t) (17)

with the covariance matrix

X̄t =
∑N

n=1

∑
k∈K C̄

(k)
nt + β Ī, (18)

where β is the noise power, The parameters θ can be estimated by
maximizing the log-likehood of the multi-frame observation vector:

ln p({x̄t}T−kK
t=1 | θ) =

∑T−kK
t=1 ln p(x̄t | θ). (19)

3.2. EM algorithm
We derive an EM algorithm to maximize the log-likelihood (19) for
estimating the parameters θ in (15). In the E-step, in a similar man-
ner to the EM algorithm for FCA, we calculate the conditional dis-
tribution of the source component vector c̄(k)nt as

p({c̄(k)nt }n,k∈K | x̄t, θ) = N (c̄
(k)
nt | µ̄

(k)
nt , Σ̄

(k)
nt ) (20)

with

µ̄
(k)
nt = C̄

(k)
nt X̄

−1
t x̄t , Σ̄

(k)
nt = C̄

(k)
nt − C̄

(k)
nt X̄

−1
t C̄

(k)
nt . (21)

The part C̄
(k)
nt X̄

−1
t in the mean µ̄

(k)
nt calculation in (21) is called

multi-frame multichannel Wiener filter in [25]. In the M-step, we
update the parameters as

snt ←
1

|K|M(K + 1)

∑
k∈K

{
tr

[
(Ā(k)

n )−1 ˜̄C(k)

nt

]}
, (22)

Ā(k)
n ← 1

T − kK

T−kK∑
t=1

(sn(t+k))
−1 ˜̄C(k)

nt , (23)

where tr calculates the trace of a matrix, |K| means the number of
elements in set K, and

˜̄C(k)

nt = µ̄
(k)
nt (µ̄

(k)
nt )

∗ + Σ̄
(k)
nt . (24)

After updating Ā
(k)
n with (23), we post-process Ā

(k)
n to satisfy

the structure of (14). The post-processing includes averaging the
should-be-equal block submatrices, e.g., A(0),∗

n ← (A
(0),0
n +A

(0),1
n +

A
(0),2
n )/3 and replacing the corresponding submatrices with 0 or ϵI.

3.3. MU algorithm
We drive an MU algorithm to minimize the negative log-likelihood
for the parameters θ in (15). In a similar manner to the MU algorithm
for FCA [14,24], a surrogate function for the negative log-likelihood
is obtained as:

D+(snt, Ā
(k)
n ,R

(k)

n(t+k),U t)

=

T−kK∑
t=1

[ N∑
n=1

∑
k∈K

(
tr
{
R

(k)

n(t+k)x̄tx̄
H
t (C̄

(k)
nt )

−1R
(k)

n(t+k)

H})
+tr(X̄tU t

−1)
]
, (25)

where R
(k)

n(t+k) and U t are auxiliary variables given by

R
(k)

n(t+k) = sn(t+k)Ā
(k)
n X̄−1

t , U t = X̄t. (26)

Then, we optimize the parameters θ based on the minimization of
the surrogate function (25). The derived update formulas are

snt ← snt

√√√√√∑
k∈K tr

{
X̄−1

(t−k)x̄(t−k)x̄H
(t−k)X̄

−1
(t−k)Ā

(k)
n

}
∑

k∈K tr
{
Ā

(k)
n X̄−1

(t−k)

} , (27)

Ā(k)
n ←

[
T−kK∑
t=1

sn(t+k)X̄
−1
t

]−1

#

[
Ā(k)

n

T−kK∑
t=1

{
sn(t+k)X̄

−1
t x̄tx̄

H
t X̄

−1
t

}
Ā(k)

n

]
. (28)

Here, # denotes the geometric mean [26, 27] of two positive
semidefinite matrices and is defined as

A#B = A
1
2

(
A− 1

2BA− 1
2

) 1
2
A

1
2 . (29)

As in the EM algorithm, after updating Ā
(k)
n with (28), we post-

process Ā(k)
n to meet the structure of (14).

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions
We conducted experiments to evaluate the separation performance
of the conventional mfFCAo and the proposed mfFCAa with EM
or MU algorithm. In this experiment, we tested the case where
N = 3 speech sources were mixed and observed with M = 2 omni-
directional microphones. We measured impulse responses from the
sources to the microphones under the room conditions shown in
Fig. 2. The room reverberation time (RT) was set to 270 and 450 ms.
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Fig. 2: Experimental setup

Fig. 3: Optimization scheduling with three steps. i is number of
iterations in each step. In the experiments, we set them to istep1 = 40,
istep2 = 40, and istep3 = 240.

The source images were generated by convolving 6 seconds English
speech source signals with the impulse responses. We generated 8
mixtures by adding these source images. The sampling frequency
was 8 kHz. The STFT window size and shift were 1024 and 256
samples (128 and 32 ms), respectively. Separation performance was
evaluated using Signal-to-Distortion Ratios (SDR) [28].

We specified the sets of time lags, L and K, according to the
RT. When the RT was 270 ms, they were set to L = {0, 2, 4} and
K = {−4,−2, 0, 2, 4}. When the RT was 450 ms, they were set to
L = {0, 2, 4, 6} and K = {−6,−4,−2, 0, 2, 4, 6} .

To effectively optimize both mfFCAo and mfFCAa, we intro-
duced an optimization scheduling technique to gradually increase the
number of the time lags during the iterative optimization, as shown
in Fig. 3. To begin with, we optimized the parameters, snt and An,
using the original FCA (Subsection 2.1). We then switched to mfF-
CAo or mfFCAa and optimized the parameters by gradually increas-
ing the number of time lags in L or K one by one from the initial set
L = {0, l1} in the case of mfFCAo and K = {−k1, 0, k1} in the
case of mfFCAa until the set reached the specified set. After that, we
further updated the parameters in an extra step. We used mfFCAo
with EM or mfFCAa with EM/MU in the second and third steps. We
tested four combinations: EM+EM, EM+MU, mfFCAo+EM, and
mfFCAo+MU, where “A+B” means that method “A” was used in
Step 2 and method “B” was used in Step 3. Here EM/MU denotes
mfFCAa with EM/MU, respectively.

4.2. Results
Figure 4 shows the convergence behavior for a certain mixture when
changing the combinations of mfFCAo and mfFCAa with EM/MU
in Steps 2 and 3 in the optimization scheduling. The proposed meth-
ods show higher separation performance than mfFCAo. Addition-
ally, EM+MU and mfFCAo+MU converged more quickly than other
methods, demonstrating the advantage of the MU algorithm.

Fig. 4: Convergence behavior of conventional mfFCAo and pro-
posed mfFCAa with EM/MU when RT was 450 ms. Optimization
scheduling described in Fig. 3 was used for proposed methods.

Fig. 5: Scatter plot for comparing SDR [dB] between conventional
mfFCAo and proposed four methods: EM+EM, EM+MU, mfF-
CAo+EM, and mfFCAo+MU.

Figure 5 compares the SDR performance between the conven-
tional mfFCAo and the four methods using the proposed mfFCAa
with EM/MU. The horizontal axis denotes the SDR of conventional
mfFCAo, and the vertical axis denotes the SDR obtained by the pro-
posed methods. Each point corresponds to the separation result for
one mixture signal. Overall, the points are above the diagonal dashed
line, implying that the proposed mfFCAa improves mfFCAo. In par-
ticular, the average SDR obtained by EM+MU were 6.1 dB when RT
was 450 ms and 7.7 dB when RT was 270 ms, which were 0.35 dB
and 0.62 dB higher than the conventional mfFCAo, respectively.

5. CONCLUSION

We modified the conventional mfFCA to handle the direct and de-
layed source components more accurately. We also derived the EM
and MU algorithms for the new formulation of mfFCA. The exper-
imental results showed that by using an optimization scheduling,
the proposed mfFCA can improve the separation performance of the
original mfFCA.
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