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ABSTRACT

The performance of microphone array signal processing de-
pends on the number of microphones used. Generally, higher
microphone counts correlate with improved performance.
However, there are often some limitations on the number of
microphones used in the practical scenery. In such cases,
we can generate virtual microphone signals to mimic the
real signal so that the number of pieces of equipment used
can be reduced. However, previous traditional methods may
not always perform optimally in real-world situations, and
previous neural network models may not accurately estimate
the virtual signal. Our research introduces a new method
called the Transformer-based Virtual Microphone Estimator
(TVME), which estimates virtual microphone signals in the
time domain. TVME employs a fully supervised learning
framework that utilizes real observations from virtual micro-
phone locations as targets and is trained using multi-channel
observations from recordings. We conducted experiments
using the CHiME-4 corpus, which demonstrates that TVME
is more accurate than previous NN-VME approaches in esti-
mating virtual microphone signals.

Index Terms— virtual microphone, time-domain net-
work, array signal processing, supervised training

1. INTRODUCTION

Microphone array signal processing [1] is a technique that
captures and analyzes acoustic signals using multiple mi-
crophones. Including blind source separation (BSS) [2, 3],
speech enhancement [4, 5], and direction-of-arrival (DOA)
estimation [6, 7]. Using more microphones results in better
performance, but practical limitations often prevent the in-
tegration of many microphones. Researchers are developing
techniques to synthesize virtual microphone channels from a
limited set of microphones to enhance overall performance in
audio applications.

Within the traditional approaches [8, 9] , certain re-
searchers have based their methods [8] on underlying physical
models, estimating virtual signals through complex interpo-
lation techniques within the domain of complex logarithmic
domains. Different phase and amplitude estimates have also
been performed independently [9], and these estimates have
subsequently been combined to utilize methods rooted in

β-scatter estimation. This composite approach improves the
processing performance of microphone arrays, especially in
the presence of inherent uncertainties.

In light of the rising prominence of Deep Neural Net-
works (DNNs) within the domain of virtual microphone re-
search [10, 11], certain investigators have introduced a time-
domain model named NN-VME [11], which shares structural
similarities with ConvTasNet [12]. However, a persistent
challenge remains. The current model is facing limitations in
generating realistic audio signals due to the traditional neural
network’s inability to process continuous data effectively. It
is an area that requires further exploration and improvement.

To tackle this challenge, in this paper, we introduce an
innovative methodology for virtual microphone signal esti-
mation within a supervised learning framework. This method
leverages the Transformer [13], a contemporary and widely
adopted novel neural network architecture. Notably, Trans-
former does not explicitly rely on assumptions tied to physi-
cal modeling and has a remarkable potential for processing
sequential data. In recent years, Transformer-based neural
network models [14, 15, 16] have demonstrated exceptional
performance in audio classification tasks. Our study takes in-
spiration from recent advancements to explore the use of the
Transformer framework in the field of virtual microphones.
We aim to investigate the potential for estimating virtual mi-
crophone signals by establishing mapping relationships be-
tween signals derived from observed data captured using real
microphone arrays. We will be using transformer-based mod-
els for this new approach, which is called the Transformer-
Based Virtual Microphone Estimator (TVME).

In our research, we conducted thorough assessments to
compare our proposed approach with NN-VME. To ensure a
fair evaluation, we used the same dataset as NN-VME, the
CHiME-4 corpus [17], which is known for its realistic, noisy
recordings from public environments. Our experimental re-
sults confirm that our proposed TVME achieves a commend-
able performance in virtual microphone estimation. More-
over, we found that incorporating TVME leads to significant
improvements in the speech enhancement beamformer’s per-
formance, demonstrating the practical usefulness of our ap-
proach.



2. RELATED WORKS

2.1. Transformer

Transformer represents an innovative deep learning architec-
ture initially tailored for natural language processing [18, 19],
which has subsequently gained broad application across di-
verse domains. This architectural paradigm introduces a suite
of multi-headed self-attention mechanisms that operate con-
currently on all components within an input sequence, thereby
adeptly extracting and transforming pertinent features.

The cornerstone of the Transformer framework lies in the
Multi-head Attention module, which plays a pivotal role in
the model’s effectiveness. The multi-head attention module
takes as input a matrix E ∈ RN×k consisting of multiple
embedded vectors e ∈ R1×k and outputs features. Where
N represents the total number of vectors and k represents
the length of embed vectors. Multi-head Attention involves
a three-step process. First, it learns weights, the module im-
plicitly learns weights WQ, WK , and WV , responsible for
generating query matrix Q, key matrix K, and value matrix
V for each input position. Secondly, the procedure begins
with computing the dot product between the query matrix Q
and the key matrix K. This result is then scaled by a normal-
ization factor, represented as the reciprocal of the square root
of the vector’s dimension d. A softmax operation is applied
across all inputs, and each value vector is weighted accord-
ingly to yield the output of the attention module. The atten-
tion mechanism can be expressed as follows:

Attention (Q,K,V ) = softmax

(
QKT

√
d

)
V (1)

Finally, to encompass multiple attention heads, each head de-
noted as h, we concatenate their results to form the final out-
put:

MHAttention (Q,K,V ) = concat (h1, ...hn)Wo (2)

Where MHAttention donated multi-head attention, Wo is
the matrix acquired through the learning process and n is the
number of heads.

The Transformer architecture has proven to be highly ef-
fective in natural language processing tasks. It has also shown
great potential in the audio field due to its inherent attributes.

3. PROPOSAL METHOD

The architectural framework of the proposed model, TVME,
is illustrated in Figure 1. The network is designed to accom-
modate two input channels, which correspond to the observed
signals from real microphones, and it subsequently produces
an output channel representing the estimated virtual micro-
phone signal. In the subsequent sections, we delineate the
method employed for forecasting the virtual microphone sig-
nal.

3.1. Embedding

First, we need to embed the time domain input as E. In
TVME, the process is divided into two steps - waveform em-
bedding and position embedding.

3.1.1. Waveform embedding

When a Transformer-based model deals with natural lan-
guage processing task, the input consists of words and can
be easily transformed into vectors using algorithms like
Word2Vec [20]. However, when TVME deals with this
task, the input is a time-domain signal which requires special
processing.

Consider rc ∈ R1×T as the time domain waveform signal
of length T from channel c, which is observed by the micro-
phone array, and let ĉ represent the channel need to estimate.
Subsequently, the input rin = {rc1 , rc2}. Initially, these two
input tensors are concatenated along the channel dimension,
i.e., the first dimension, yielding the tensor rin ∈ R2×T .
Then rin is introduced into the waveform encoder. The en-
coder first divides the input tensor into N segments s, then
rin = {s1, s2, ...sN}, s ∈ R2× T

N ; each segment s is then
embedded as a vector ewav

t by using 1D convolution layer
such as:

ewav
t = Conv1d(st) (3)

The variable t denotes the position of the segment in the input
signal sequence. The ewav

t ∈ Rk×1, then transpose the vector
to get the final ewav

t .

3.1.2. Position embedding

Furthermore, a dedicated position encoding is devised for
each feature segment, with the position encoding equation
taking the following form:

epost =


PE (t, 2i) = sin

(
t

10000
2i
d

)
PE (t, 2i+ 1) = cos

(
t

10000
2i+1

d

) (4)

Here, position embedding is denoted by PE, with epost repre-
senting the vector associated with position t. The dimension
of the vector is denoted as d, 2i denotes even dimension and
2i+ 1 denotes odd dimension. Eventually, we will be able to
get the embedded vector et:

et = ewav
t + epost (5)

Combining the vectors et at different positions t gives the
Embedded matrix E ∈ RN×k.

3.2. Encoding

To obtain the code matrix C ∈ RN×k, the Transformer en-
coder introduces E, as shown in Figure 1. The encoder is



Fig. 1. Structure of transformer-based virtual microphone estimator (TVME)

made up of a stack of M blocks, each block containing a
multi-layer perceptron (MLP) module and a multi-head at-
tention module. Before processing, the inputs of each module
are layer normalized to ensure stability. Additionally, both
inputs and module outputs are aggregated by element-wise
summation to form a residual structure.

3.3. Decoding

In order to convert the encoded matrix C into a time do-
main output, we need to do the embedding inverse operation.
Therefore, in the transformer encoder, the input coding ma-
trix C needs to be transposed first and then converted to a
single-channel time-domain virtual signal vĉ ∈ R1×T using
a one-dimensional transposed convolution as follows:

vĉ = ConvTranspose1d(CT) (6)

Finally, the output is normalized to output a virtual signal.

3.4. Loss function

The proposed TVME utilizes a supervised learning frame-
work to estimate virtual microphone signals. During the train-
ing phase, the actual microphone signal, denoted as rĉ, is
used as the training target at the virtual microphone location.
The network is trained using the time-domain loss between
the estimated and actual signals.we have chosen signal-to-
distortion ratio (SDR) [21] as the loss function. SDR is the
ratio of the input signal’s power to the difference between the
input signal and the reconstructed signal. This loss function
can give us a clear understanding of the reconstruction perfor-

mance. So the SDR is used as the training loss as follows:

SDR (rĉ,vĉ) = 10 log10

∥∥∥∥ rĉ
vĉ − rĉ

∥∥∥∥2 (7)

4. EXPERIMENT

The proposed TVME will be evaluated through two types of
assessments: 1) to evaluate its virtual microphone estima-
tion performance; and 2) to evaluate the enhancement per-
formance of the beamformer using the estimated virtual mi-
crophone signals.

4.1. Experiment condition

We have used the CHiME-4 corpus to train and test our
TVME. This dataset comprises both simulated and real
recordings and includes 3 hours of actual speech from 4
speakers and 15 hours of simulated speech from 83 speakers.
We have excluded the microphone signals with low inter-
correlation scores in channels 4, 5 and 6, resulting in 1149
discourses for evaluation. During the training process, we
take the signals of channels 4 and 6 of the training set as
inputs and use the signal of channel 5 as the target to train
TVME to generate the signal.

We evaluated the effectiveness of virtual microphone es-
timation by using SDR as a metric. Our approach involved
computing the SDR using actual microphone signals of the
corresponding channels and TVME estimated signals. We
then compared the results with NN-VME. To examine the
impact of the virtual signal on the beamformer’s enhance-
ment effect, we created noisy speech by mixing clean speech



Table 1. SDR(higher is better) of the virtual signal that gen-
erated by estimator with channel 4 and 6 real signals on the
test set

Model Eval CH Ref CH Simu Real
no process 4 5 12.1 8.8
NN-VME 5 5 16.6 13.8

TVME(proposed) 5 5 20.4 19.1

from the dataset with the provided noise. Using TVME, we
generated the virtual signal from this mixture and used the
MVDR (Minimum Variance Distortionless Response) beam-
former for enhancement [22]. We also calculated the SDR
scores of the clean and enhanced speech to evaluate if the vir-
tual signal could improve the beamformer’s performance.

The proposed TVME model was trained on both simu-
lated and real data from the training set. The Adam [23] algo-
rithm was employed during the training process, with an ini-
tial learning rate of 0.0001. The training program was stopped
after 200 epochs.

For the configuration of the STFT, we utilized a Blackman
window with a length of 64 ms and a shift of 16 ms, which
same as the NN-VME.

4.2. Experiment result

4.2.1. Evaluation of estimation performance

Table 1 shows the SDR scores of the evaluated models on both
simulated and real records in the test set. Here, note that the
reference signal for the SDR calculation is the noisy observed
signal at the channel corresponding to the virtual microphone,
not the clean signal so that the actual microphone estimation
performance can be evaluated even for real records.

In the table, the first column (”Eval Channel”) shows the
channel index of the virtual or real microphone signal used
as the estimated signal in the SDR calculation. The second
column (”Ref Channel”) shows the channel index of the real
microphone signal used as the reference signal. As a baseline,
we compare the scores with the SDR obtained by NN-VME.

The results in Table 1 demonstrate that the signals esti-
mated by the proposed TVME method achieve significantly
higher SDR scores compared to those obtained by NN-VME,
for both virtual and real data. These findings suggest that
TVME outperforms NN-VME in estimating virtual micro-
phones.

4.2.2. Evaluation of beamformer enhancement performance

Table 2 displays the SDR scores of the beamformer assessed
on the simulated data in the test set. In this table, VM BF
stands for the beamformer that incorporates the estimated vir-
tual microphone and RM BF refers to the beamformer that uti-
lizes only the real microphone. The columns ”real” and ”vir-

Table 2. Speech enhancement performance of MVDR beam-
former on the noisy test dataset, which using SDR as metric

Method Used Channel SDRReal Virtual
no process 5 - 3.19

RM BF 4,6 - 6.42
VM BF 4,6 5 7.01
RM BF 4,5,6 - 8.49

tual” in ”used ch” indicate the channel numbers that corre-
spond to the real and virtual microphones, respectively, which
are utilized for developing the beamformer.

According to the table, the VM BF achieves higher SDR
scores compared to RM BF, which is constructed using the
same number of real microphone signals. However, the VM
BF has slightly lower SDR scores when compared to the RM
BF which uses the same number of microphone signals. This
indicates that the virtual microphone signals generated by
TVME can enhance the performance of the beamformer to
some extent but have limitations compared to real signals.

5. CONCLUSION

This paper presents a novel time-domain virtual microphone
estimator, termed TVME. The proposed approach employs
the Transformer architecture that utilizes a two-channel real
signal as input and produces a single-channel virtual signal as
output. TVME is trained using a supervised learning method-
ology to accurately estimate the virtual microphone signal.
The proposed model’s efficacy is demonstrated through ex-
perimental evaluations that show promising results.

The findings of the experiments conducted by our team
indicate that the TVME approach surpasses the NN-VME ap-
proach in terms of predicting virtual microphone signals with
greater accuracy. The results also suggest that the signals
generated through the TVME approach have a positive effect
on the beamformer’s performance, albeit to a limited extent
when compared to the actual signals. These results emphasize
the potential of TVME as a dependable method for enhancing
the precision of virtual microphone signals, thereby improv-
ing the beamformer’s performance. Furthermore, the experi-
ments validate the feasibility of the Transformer architecture
in the realm of virtual microphone technology, underscoring
the potential of the Transformer architecture in the field of
virtual microphone technology.
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