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Abstract

This paper proposes a novel method for moving source ex-
traction using a limited number of microphones. In recent
years, the constant separating vector (CSV) mixing model
has been devised for auxiliary function-based independent
vector extraction (AuxIVE) to extract a moving signal sta-
bly. However, the extraction performance of AuxIVE based
on the CSV mixing model (CSV-AuxIVE) performance sig-
nificantly decreases with fewer microphones, limiting prac-
tical applications. To this end, a switching mechanism is
adopted to create multiple extraction filters in each batch for
varying spatial positions, even with a few microphones. Ex-
perimental results demonstrate that the proposed switching
CSV-AuxIVE improves iSDR and iSIR compared to CSV-
AuxIVE, particularly in microphone-limited settings.

1. Introduction

Blind source separation (BSS) is an algorithm for separating
independent source signals from mixed signals without any
prior information. Blind signal extraction (BSE) is a special
form of BSS that extracts a specific source of interest (SOI)
from mixed signals. With the development of speech applica-
tions, BSE has been widely used in automatic speech recog-
nition, teleconferencing and hearing aid devices, etc.

As a traditional BSS method, independent vector analysis
(IVA) [1] [2] separates signals by maximizing statistical in-
dependence and it also uses a joint statistical source model
assuming dependence between different frequency compo-
nents. Building on this, auxiliary function-based IVA (Aux-
IVA) [3] has been proposed, which stabilizes and accelerates
the convergence of parameter optimization for BSS. As a spe-
cial from of AuxIVA, auxiliary function-based independent
vector extraction (AuxIVE) [4] skips most of the calcula-
tions for parameter optimization when dealing with BSE. The
methods above are limited to time-invariant scenarios where
all sounds including SOI are fixed.

To address time-varying scenarios, the constant separating
vector (CSV) mixing model [5] enables moving source ex-
traction by imposing spatial constraints to cover the entire
area of the SOI movement during the recording, as shown
in Fig. 1 (a). Recently, an algorithm has been proposed based

on AuxIVE and CSV mixing model, which is named CSV-
AuxIVE [6]. It can maintain extraction performance for dy-
namic sources. However, CSV-AuxIVE requires a large num-
ber of microphones to impose spatial constraints to cover the
moving area; it cannot impose a lot of constraints if we have
a small number of microphones, as shown in Fig. 1 (b).

This paper proposes a novel method to extract the mov-
ing SOI even with a small number of microphones. Specifi-
cally, we incorporate a switching mechanism [7] into CSV-
AuxIVE. Switching mechanism has been proposed to im-
prove speech extraction performance when the number of
sources exceeds the number of microphones. Using the
switching mechanism, our proposed method generates and
dynamically applies multiple filters to specific SOI move-
ment ranges. We refer to the proposed method as Switch-
ing CSV-AuxIVE (Sw-CSV-AuxIVE). Unlike [7] which has
used this mechanism to suppress interference and noise sig-
nals, Sw-CSV-AuxIVE focuses on expanding the coverage of
SOI movement by the switching mechanism, ensuring robust
performance with limited microphones as shown in Fig. 2.

2. Problem formulation
We assume there are M microphones to extract an SOI. After
short-time Fourier transform (STFT), we obtain observed mi-
crophone signals xf,l = [x1,f,l, . . . , xM,f,l]

T ∈ CM , the SOI
sf,l ∈ C, and the background signals zf,l ∈ CM−1 at each
time frame l = 1, . . . , L and frequency bin f = 1, . . . , F . In
addition, let all frames be divided into T ≥ 1 time intervals
called blocks, and each block includes Lb frames for sim-
plicity, hence time frames L = TLb. Hereafter, we treat the
frame index {(t− 1)Lb + 1, ..., tLb} as the same block index
t for t = 1, . . . , T . For example, we denote xf,(t−1)Lb+l′ as
xf,t,l′ for t = 1, . . . , T and l′ = 1, . . . , Lb.

As a main contribution of this paper, we combine the CSV
mixing model [8] and the switching mechanism [7]. Figure
3 shows the processing flow that yields SOI sf,t,l′ . We write
the relation between sf,t,l′ , zf,t,l′ , and xf,t,l′ in a semi-time-
varying model as:

xf,t,l′ =
J∑

j=1

δj,f,tAj,f,t

[
sf,t,l′
zf,t,l′

]
︸ ︷︷ ︸

sf,t,l′

, (1)
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Figure 1: Example of directional response in conventional
CSV-AuxIVE [6]

where Aj,f,t is a mixing matrix parameterized as:

Aj,f,t = [af,t Qj,f,t]

=

[
γf,t hH

j,f

gf,t
1

γf,t
(gf,th

H
j,f − (β∗

j,fγf,t + hH
j,fgf,t)IM−1)

]
.

(2)

(·)H represents the Hermitian transpose. δj,f,t is a switch-
ing weight which selects block-invariant parameters hj,f and
βj,f in different time block t. Weight δj,f,t takes a binary
value so that

∑J
j=1 δj,f,t = 1 and δj,f,t ∈ {0, 1}. Here-

after, j and J are referred to as an index of a switching state
and the total number of states, respectively. Similarly, the
separation model can be written as:

sf,t,l′ =
J∑

j=1

δj,f,tW
H
j,f,txf,t,l′ , (3)

where Wj,f,t = A−H
j,f,t is a separation matrix parameterized

as:

Wj,f,t = [wj,f Bf,t] =

[
βj,f gH

f,t

hj,f −γ∗
f,tIM−1

]
. (4)
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Figure 2: Example of directional response in Sw-CSV-
AuxIVE with a small number of microphones (e.g., 2).

Figure 3: Flows of obtaining SOI sf,t,l′

The time-invariant separation filter wj,f in (4) enables us
to extract one source stably. It is possible to parametrize
Wj,f,t and Aj,f,t by assuming a distortion-less constraint∑J

j=1 δj,f,tw
H
j,faf,t = 1. The mixing model in (1) where

J = 1 corresponds to the CSV mixing model [6], and the
separation model in (3) where T = 1 corresponds to that with
the switching mechanism [7].

Next, we assume a probabilistic model. According to (3),
we can write negative log probability of xf,t,l′ :

p({xf,t,l′}f,t,l′)

=
∏
f,t,l′

p(sf,t,l′)

∣∣∣∣∣∣det
J∑

j=1

δj,f,tWj,f,t

∣∣∣∣∣∣
2

. (5)

Then, we assume each component of sf,t,l′ (i.e., sf,t,l′ and
zf,t,l′ ) are mutually independent over all times and frequen-
cies. So their joint probability distribution function (pdf)
is equal to the product of marginal pdfs as p(sf,t,l′) =
p(sf,t,l′)p(zf,t,l′), where p(zf,t,l′) denote the pdf of zf,t,l′ ,
respectively. We set p(sf,t,l′) as the following pdf to reflect
the block-dependent variance:

p(sf,t,l′) = g

(
sf,t,l′

σ̂f,t

)
σ̂−2
f,t , (6)
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where σ̂f,t =
∑J

j=1 δj,f,t

√
wH

j,fCf,twj,f is a frame-

based variance of sf,t,l′ and Cf,t = E
[
xf,t,l′x

H
f,t,l′

]
=

1
Lb

∑Lb
l′=1 xf,t,l′x

H
f,t,l′ is a frame-based covariance matrix of

xf,t,l′ . We use a time-varying Gaussian distribution to nor-
malized non-Gaussian random variable g(·):

g

(
sf,t,l′

σ̂f,t

)
∝ 1

rf,t,l′
exp

(
− |sf,t,l

′ |2

rf,t,l′ σ̂2
f,t

)
, (7)

where ∝ denotes the proportionality symbol. The pdf of
the background is assumed to be circular Gaussian with zero
mean and covariance matrix Ωf,t = E[zf,t,l′zH

f,t,l′ ]:

p(zf,t,l′) ∝
1

detΩf,t
exp(−zH

f,t,l′Ω
−1
f,tzf,t,l′). (8)

Because δj,f,t takes 1 for a state j,∣∣∣∣∣∣det
J∑

j=1

δj,f,tWj,f,t

∣∣∣∣∣∣ =
J∑

j=1

δj,f,t log |detWj,f,t|

=

J∑
j=1

δj,f,t|γf,t|(M−2)|wH
j,faf,t|.

(9)

From the above assumptions, we can obtain the negative
log-likelihood of the given signal X = {xf,t,l′}f,t,l′ :

− log p(X ) ∝
J∑

j=1

F∑
f=1

T∑
t=1

δj,f,t
Tj,f
L(θj,f,t), (10)

L(θj,f,t) = E

[
|wH

f,txf,t,l′ |2

rf,t,l′ σ̂2
f,t

]
+ log rf,t,l′ + log σ̂2

f,t

+ E
[
zH
f,t,l′Ω

−1
f,tzf,t,l′

]
− log |γf,t|2(M−2)

− log |wH
j,faf,t|, (11)

where Θ = {W,R,D}, W = {{wj,f}j,f , {af,t}f,t},
R = {rf,t,l′}f,t,l′ , D = {δj,f,t}j,f,t, and θj,f,t =

(wj,f ,af,t, rf,t,l′ , δj,f,t).
c
= denotes equality up to the con-

stant terms. Tj,f =
∑T

t=1 δj,f,t.

3. Optimization Process

We use a coordinate descent method to reduce the cost func-
tion in (11) by repeatedly updating eachW , D, andR one by
one.

We use orthogonal constraint [8] that SOI sf,t,l′ has
zero sample correlation with the noise signal zf,t,l′ , i.e.,∑J

j=1 δj,f,tw
H
j,fCf,tBf,t = 0T

(M−1), where 0M ∈ RM is

θ
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Figure 4: Configurations of sources and microphones

zero vector. Under the distortionless constraint and the or-
thogonal constraint, we can estimate t-th mixing vector af,t:

af,t =
J∑

j=1

δj,f,t
Cf,twj,f

wH
j,fCf,twj,f

. (12)

After updating af,t, we update wj,f in each switching state j
based on conventional technique [8]:

wj,f ←

(
T∑

t=1

δj,f,t
Vf,t

σ̂2
f,t

)−1 T∑
t=1

δj,f,t
wH

j,fVf,twj,f

σ̂2
f,t

af,t,

(13)

and Vf,t is a covariance matrix:

Vf,t = E
[
xf,t,l′xf,t,l′

rt,l′

]
, (14)

where rt,l′ ← 1
F

∑
f rf,t,l′ . Note that this paper adopts

a frequency-independent source model only when updating
separation matricesW , following a previously proposed prac-
tical technique [9].

We update switching weights D by setting δj,f,t = 1 for
a state j that gives the minimum cost function in (11) among
all states at each time frequency:

δj,f,t ←

{
1 if j = argmin

j′
L(θj′,f,t)

0 otherwise
. (15)

After updating sf,t,l′ using (3) and (4), we update the vari-
ance rf,t,l′ by weighting the power of sf,t,l′ by the inverse of
block-dependent variance σ̂2

f,t:

rf,t,l′ ←
∣∣∣∣sf,t,l′σ̂f,t

∣∣∣∣2 . (16)

4. Experimental evaluation
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Table 1: Results of comparison of methods with different
numbers of microphones

# of mics. Method iSDR [dB] iSIR [dB]

6 CSV-AuxIVE [6] 2.72 7.06
Sw-CSV-AuxIVE 2.71 7.93

5 CSV-AuxIVE [6] 2.61 6.82
Sw-CSV-AuxIVE 2.94 9.24

4 CSV-AuxIVE [6] 2.39 6.27
Sw-CSV-AuxIVE 2.69 7.17

3 CSV-AuxIVE [6] 2.15 5.65
Sw-CSV-AuxIVE 2.65 6.47

2 CSV-AuxIVE [6] 0.70 0.85
Sw-CSV-AuxIVE 1.89 0.89

4.1 Experimental condition

We compared the results of the proposed Sw-CSV-AuxIVE
with the existing CSV-Aux-IVE [6]. We obtained the ob-
served signals by mixing one moving SOI and 5 point noises
using signal generator1, and generated 10 groups of source
signals. We randomly utilized one point-source speech sig-
nal from the TIMIT corpus test set [10] to obtain SOI. The
number of microphones was reduced to 6, 5, 4, 3, and 2
in that order. Lb = 100 frames and we set the number of
block T = 16. The layout of the experimental environment
is shown in Fig. 4.

The speech extraction performance was measured by the
average value of improvement of signal-to-distortion ratio
(iSDR) and signal-to-interferences ratio (iSIR) [11].

4.2 Result

Our results compare the iSDR between CSV-AuxIVE and the
proposed Sw-CSV-AuxIVE using Table 1. The proposed Sw-
CSV-AuxIVE consistently outperforms the baseline CSV-
AuxIVE in terms of iSIR across all configurations. Although
the iSDR of the baseline methods and our proposed Sw-CSV-
AuxIVE method shows little difference when the number of
microphones is 6, as the number of microphones decreases,
the iSDR of Sw-CSV-AuxIVE becomes increasingly signif-
icant. Notably, under the condition of having only 2 micro-
phones, Sw-CSV-AuxIVE has about 1 dB higher iSDR than
CSV-AuxIVE.

5. Conclusions

This paper proposed Sw-CSV-AuxIVE to enhance BSE of
moving sound sources, especially in situations with fewer

1https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-
generator

microphones. Our proposed method was invented by incor-
porating the switching mechanism to generate multiple sep-
aration filters for different spatial positions. Experimental
results demonstrated that Sw-CSV-AuxIVE consistently out-
performs CSV-AuxIVE.
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