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ABSTRACT
Nonlinear acoustic echo cancellation (NAEC) is of significant im-
portance in acoustic telecommunication. To improve NAEC perfor-
mance in the double-talk case, semi-blind source separation-based
NAEC (SBSS-NAEC) algorithms have been proposed. However,
to deal with reverberation and loudspeaker nonlinearities, convolu-
tive transfer function (CTF) models and power series expansions are
employed, which significantly increase the number of free param-
eters and consequently lead to slow convergence speed and, hence,
limited performance. In this paper, we introduce the data-reuse strat-
egy, well-known in the adaptive filter literature, into an SBSS-NAEC
framework and propose two algorithms: data-reuse iteration pro-
jection (DR-IP) and data-reuse element-wise iterative source steer-
ing (DR-EISS). Several simulations demonstrate the superiority of
the proposed methods, especially the tracking capability when the
impulse response changes.

Index Terms— Nonlinear acoustic echo cancellation, semi-
blind source separation, data reuse, iterative projection, element-
wise iterative source steering

1. INTRODUCTION

Nonlinear acoustic echo cancellation (NAEC) has been a subject of
extensive research over the past few decades [1–3]. Generally, the
loudspeaker nonlinearities are approximated with a power series ex-
pansion, and the acoustic impulse response (AIR) from the loud-
speaker to the microphone is modeled as a finite impulse response
(FIR) filter. Typically, adaptive filters are used to estimate corre-
sponding expansion weights and FIR coefficients [4–10]. However,
such methods still suffer from several major issues including: 1) low
convergence rates and bad tracking capabilities, and 2) degradation
of convergence rate and performance during activity of the near-end
signal, i.e., in the double talk situation.

To maintain the effectiveness of echo cancellation in double-talk
scenarios, a straightforward way is to incorporate a double-talk de-
tector into the original NAEC methods, resulting in the suspension
of filter updates during double-talk situations. Therefore, echo can-
cellation quality depends on the detection accuracy of double-talk
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situations. Furthermore, double-talk detection introduces an addi-
tional algorithmic delay, impacting real communication system per-
formance. On the other hand, semi-blind source separation (SBSS)-
based NAEC, has been proposed as an alternative technique for elim-
inating the echo during double-talk situations without the need of
explicit double-talk detection [11, 12] from the perspective of blind
source separation (BSS) [13–18]. In strongly reverberant environ-
ments, convolutive transfer function (CTF)-based models [19] are
often used to maintain performance for BSS [20, 21] and SBSS-
based NAEC tasks [22–24].

By reusing the same data (i.e., segments of the input and ref-
erence signals) several times for computing the filter updates, the
data-reuse (DR) scheme has been proposed for adaptive filter-based
NAEC algorithms such as DR LMS [25, 26], DR NLMS [27–29],
and DR RLS [30–32] approaches. Here, a significant improvement
of the convergence rates and tracking capabilities has been shown
by using this strategy. Hence, in this paper, we incorporate the
DR scheme into the SBSS-based NAEC framework and present two
novel algorithms, which could be regarded as an extension of our
previous work [23]. By reusing the same data when updating each
frame, the convergence rate is improved significantly, while simul-
taneously enhancing the overall performance. Simulations demon-
strate that the proposed method significantly improves cancellation
performance relative to baselines in double-talk situations.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Considering a full-duplex speech communication scenario, in the
time domain, the signal observed by the microphone y(t) can be
expressed as

y(t) = s(t) + v(t)

= s(t) + a(t) ∗ f [x(t)] , (1)

where t is the time index, s(t) and x(t) are the near-end and far-end
signals, respectively, v(t) = a(t)∗f [x(t)] is the acoustic echo, a(t)
is the AIR, f [·] denotes the distortion caused by the loudspeaker,
which includes both linear and nonlinear effects, and ∗ denotes the
linear convolution.

To overcome the difficulty of estimating a nonlinear system, in
practice, the nonlinear effects caused by the loudspeaker is com-
monly approximated by a linear combination of the power series
of the far-end signal [33, 34], like the odd power series expansion
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[22, 35], which can be expressed as

f [x(t)] =

P−1∑
p=0

cpx
2p+1(t), (2)

where p and P are the index of the expansion coefficient cp and
the expansion order, respectively. By inserting the representation (2)
into the signal model (1), the observed signal can be denoted as

y(t) = s(t) + a(t) ∗

(
P−1∑
p=0

cpx
2p+1(t)

)
. (3)

By using the CTF-based model, the observed signal can be rewritten
in the STFT domain as

Yi,j = Si,j +

L−1∑
l=0

P−1∑
p=0

cpAi,j,lXp,i,j−l

= Si,j +

L−1∑
l=0

P−1∑
p=0

A′
p,i,j,lXp,i,j−l, (4)

where i = 1, 2, . . . , I and j = 1, 2, . . . , J are indexes of frequency
bins and time frames, respectively. Hereby, I denotes the number of
frequency bins and J is the number of time frames, L is the CTF fil-
ter length and Ai,j,l represents the acoustic transfer function (ATF).
Furthermore, we introduced A′

p,i,j,l = cpAi,j,l as the merged ATF,
and Yi,j , Si,j , and Xp,i,j−l as the STFT-domain representations of
y(t), s(t), and x2p+1(t), respectively. The mixing model (4) can be
compactly written in matrix form as

ỹi,j = H′
i,j s̃i,j , (5)

with

xi,j−l = [X0,i,j−l X1,i,j−l · · · XP−1,i,j−l]
T ∈ CP×1, (6)

s̃i,j =
[
Si,j xT

i,j xT
i,j−1 · · · xT

i,j−L+1

]T
∈ C(PL+1)×1, (7)

ỹi,j =
[
Yi,j xT

i,j xT
i,j−1 · · · xT

i,j−L+1

]T
∈ C(PL+1)×1, (8)

a′
i,j,l =

[
A′

0,i,j,l A′
1,i,j,l · · · A′

P−1,i,j,l

]T ∈ CP×1, (9)

ã′
i,j =

[
(a′

i,j,0)
T (a′

i,j,1)
T · · · (a′

i,j,L−1)
T
]T
∈ CPL×1, (10)

H′
i,j =

[
1 (ã′

i,j)
T

0PL×1 IPL

]
∈ C(PL+1)×(PL+1), (11)

where (·)T represents the transpose operator, IPL is the identity ma-
trix of size PL× PL, and H′

i,j is the mixing matrix producing the
observed signal. To extract the near-end signal Si,j from the obser-
vations and to suppress the echo, we take an BSS perspective and
calculate the separated signals ŝi,j via the demixing matrix Wi,j ,
which we choose here to be the inverse of the mixing matrix:

Wi,j =

[
1 −(ã′

i,j)
T

0PL×1 IPL

]
∈ C(PL+1)×(PL+1), (12)

by

ŝi,j = Wi,j ỹi,j

=
[
Ŝi,j xT

i,j xT
i,j−1 · · · xT

i,j−L+1

]T
, (13)

where Ŝi,j is the estimate of the near-end signal Si,j .

3. PROPOSED METHOD

3.1. Probabilistic Model

To estimate the demixing matrix and to obtain the near-end signal es-
timate, we assume that the near-end signal follows a super Gaussian
distribution, which can be expressed as

p(sj) ∝ exp

−(∥∥sj∥∥2
γ

)β
 , (14)

where sj = [S1,j S2,j · · · SI,j ]
T is the vector of the near-end sig-

nal, 0 < β < 2 and γ > 0 are the shape and scale parameters,
respectively, and ∥ · ∥2 represents the ℓ2 norm. Based on an I.I.D.
assumption, the following negative log-likelihood cost function is
formulated

Lj =− 1∑j
j′=1 α

j−j′

j∑
j′=1

αj−j′ log p(sj′)

− 2
I∑

i=1

log |detWi,j | , (15)

where 0 < α < 1 is the forgetting factor. Similar to auxiliary
function-based IVA (AuxIVA), we derive a surrogate of the loss (15)
by means of the majorize-minimization (MM) algorithm

L+
j =

I∑
i=1

wH
i,jVi,jwi,j − 2

I∑
i=1

log |detWi,j | , (16)

where (·)H represents the conjugate-transpose operator, wH
i,j =[

1 − (ã′
i,j)

T
]

is the first row of the demixing matrix Wi,j . In
(16), we introduced the auxiliary variable Vi,j , which can be ex-
pressed as

Vi,j = αVi,j−1 + (1− α)φ(rj)ỹi,j ỹ
H
i,j , (17)

where

φ(rj) = rβ−2
j , (18)

rj =

√√√√ I∑
i=1

∣∣wH
i,j−1ỹi,j

∣∣2. (19)

To optimize the cost function (16), classically, the update rules
of AuxIVA-based SBSS AEC update the demixing filter only once
for each time frame, i.e., ỹi,j in (17) [12, 23]. As the original cost
function (15) is non-convex, a single MM iteration may not yield
optimal results. Consequently, in this paper, we utilize a data-reuse
strategy to address this challenge, and two algorithms have been pro-
posed: the data-reuse iteration projection (DR-IP) and data-reuse
element-wise iterative source steering (DR-EISS).

3.2. Data-Reuse IP-Based Optimization

By assuming that the demixing filter wi,j is updated N times using
the same data ỹi,j , the loss in (16) and update (17) of the auxiliary
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variable Vi,j can be rewritten as

L+
j;n =

I∑
i=1

wH
i,j;nVi,j;nwi,j;n − 2

I∑
i=1

log |detWi,j;n| (20)

and

Vi,j;n = αVi,j;n−1 + (1− α)φ(rj;n)ỹi,j ỹ
H
i,j , (21)

with

φ(rj;n) = rβ−2
j;n , (22)

rj;n =

√√√√ I∑
i=1

∣∣wH
i,j;n−1ỹi,j

∣∣2, (23)

where n = 1, 2, . . . , N is the iteration index for each time frame j
and Vi,j;n is the auxiliary variable after reusing the data of the jth
frame n times. Note that for the first iteration n = 1, the auxiliary
variable and the demixing filter corresponding to the jth frame can
be initialized by the result of the N th iteration of the previous frame,
i.e., Vi,j;0 = Vi,j−1;N and wi,j;0 = wi,j−1;N . By equating the
derivative of (20) with respect to wi,j;n to 0, the demixing filter
wi,j;n can be updated by regular IP update rules as [15]

wi,j;n ← (Wi,j;nVi,j;n)
−1 e1

= V−1
i,j;ne1, (24)

where e1 is the unit vector with the first element being 1 and all
others being 0 and wi,j;n is the demixing filter of the nth iteration
at the jth frame. Furthermore, to satisfy the structure of wi,j;n (see
first row of (12)), wi,j;n is further normalized as [12]

wi,j;n ← wi,j;n/wi,j,1;n, (25)

to ensure that the first element of wi,j;n is fixed to one, where
wi,j,1;n is the first element of wi,j;n.

3.3. Data-Reuse EISS-Based Optimization

In order to reduce the computational cost of IP-based optimization,
recently, a more efficient updating rule based on the element-wise
iterative source steering (EISS) has been proposed [23], and the up-
dating rules with data-reuse strategy can be given as

wi,j,k;n=

 wi,j,k;n−1−ui,j,k;n, if k=1,

wi,j,k;n−1−ui,j,1;nwi,j,k;n−1−ui,j,k;n, else.
(26)

Here, wi,j,k;n with k = 1, 2, . . . , PL + 1 is the kth element
of wi,j;n and ui,j,k;n is the parameter to be estimated. With the
updating rules in (26), the auxiliary function in (20) can be rewritten
as

L+
i,j;n =(wi,j;n−1 − di,j;n)

HVi,j;n (wi,j;n−1 − di,j;n)

− 2 log |1− ui,j,1;n| , (27)

where

di,j;n = [ui,j,1;n ui,j,1;nwi,j,2;n−1 + ui,j,2;n

· · · ui,j,1;nwi,j,PL+1;n−1 + ui,j,PL+1;n]
H . (28)
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Fig. 1. Comparison of average tERLE (dB) during double-talk with
different optimization approaches for the demixing filter: (a) IP, (b)
EISS. The far-end signals are a white Gaussian noise filtered by an
autoregressive model and the environment changes after 10 seconds.

Finally, the ui,j,k;n can be obtained by setting the derivative of
(27) with respect to u∗

i,j,k;n to 0, which results in

ui,j,k;n=

 1−
(
wH

i,j;n−1Vi,j;nwi,j;n−1

)− 1
2 , if k = 1,

wH
i,j;n−1vi,j,k;n/Vi,j,k,k;n, else,

(29)

where vi,j,k;n is the kth column of Vi,j;n and Vi,j,k,k;n is the kth
element of vi,j,k;n. By using the ui,j,k;n from (29), wi,j;n can be
updated from (26) sequentially followed by normalization with (25).
Since the EISS-based updating rules do not rely on matrix inversion,
the algorithmic complexity is decreased remarkably.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

The performance of the proposed algorithms is verified through sim-
ulations in this section. To simulate a double-talk scenario in real-
istic acoustic environments, a GPU-accelerate image method [36],
referred to as gpuRIR [37], is applied to simulate the room impulse
responses (RIRs) between the two sources and the microphone with
a reverberation time of approximate 300 ms. For the near-end sig-
nal, i.e., s(t), 20 speech utterances are randomly picked from the
CMU ARCTIC dataset [38]. The energy-based voice activity de-
tection (VAD) used in [39] is applied to remove the silence chunk
in each speech utterance and each utterance is then trimmed to 10
seconds. For the far-end signal, i.e., x(t), we consider two different
signal classes to highlight different aspects of the proposed meth-
ods: white Gaussian noise filtered by an autoregressive process and
the speech signal, which is also randomly selected from the CMU
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Fig. 2. Comparison of tERLE (dB) during double-talk with different
optimization approaches for the demixing filter: (a) IP, (b) EISS. The
position of the near-end speaker remains stable.

ARCTIC dataset. Hard clipping is used to simulate loudspeaker dis-
tortions, which can be expressed as

f [x(t)] =


−xthr, if x(t) < −xthr,

x(t), if |x(t)| ≤ xthr,

xthr, if x(t) > xthr,

(30)

where xthr is the threshold of the clipping and is set to 0.2 times of the
max value of |x(t)|, which is consistent with that in the paper [22].

Finally, the echos are simulated by convolving the distorted far-
end signal with the RIRs. The observed signals are generated by
adding the near-end signal and the echo at an input signal-to-echo
ratio (SER) of 0 dB. The true echo return loss enhancement (tERLE)
[35] is used as the evaluation measure. All signals are sampled at
16 kHz. The STFT is implemented with a von Hann window of
16 ms length, and a window shift of 4 ms. The expansion order P
is set to 3, the length of the CTF filter L is set to 5, the forgetting
factor α is set to 0.998, and the shape parameter β is set to 0.4. The
demixing matrix is initialized as an identity matrix IPL+1.

The experimental results of the proposed methods (referred to
as DR SBSS-CTF-AuxIVA-IP and DR SBSS-CTF-AuxIVA-EISS)
is compared with the SBSS-CTF-AuxIVA-IP in [22] and the SBSS-
CTF-AuxIVA-EISS in [23].

4.2. Results and Discussion

The convergence rate of the presented algorithms and the baselines
relying on different optimization approaches for the demixing fil-
ter are presented in Fig. 1. In this experiment, the far-end signals
are white Gaussian noise filtered by an autoregressive process. By
updating the demixing filter with DR in each frame, the proposed
method shows fast and stable convergence. Furthermore, when the
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Fig. 3. Comparison of tERLE (dB) during double-talk with different
optimization approaches for the demixing filter: (a) IP, (b) EISS. The
impulse response between the loudspeaker and microphone changes.

Scenarios IP EISS DR-IP DR-EISS

Stable 8.50 8.28 9.54 9.13
Changing 6.33 6.11 7.97 7.56

Table 1. The average tERLE (dB) of the present methods.

RIRs changes after 10 seconds, the proposed method also shows a
good tracking ability for both optimization methods.

Fig. 2 and Fig. 3 show the AEC performance when the impulse
response is stable and changing scenarios, respectively, where the
speech signal is utilized as the far-end signal. The average tERLE
under these two scenarios is shown in Table 1. Compared to the
baselines, the proposed DR-based method shows a significant im-
provement in tERLE, which indicates that with the DR scheme, the
SBSS-based AEC system can efficiently speed up convergence and
enhances the performance. Furthermore, when the near-end speaker
moves (impulse response changes), the performance improvement
achieved with the DR scheme is more significant compared to that
in a stable environment. This highlights the DR scheme’s strong
tracking ability, especially in impulse response varying scenarios.

5. CONCLUSIONS

In this paper, we incorporated the DR scheme into an SBSS-based
AEC framework relying on CTF-AuxIVA for estimating the demix-
ing filter. We derived IP-based and EISS-based optimization meth-
ods and showed that the presented algorithm works well in terms
of both convergence rate (tracking ability) and overall AEC perfor-
mance. The presented simulation results demonstrate the superiority
of the proposed method over the compared baseline methods.
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