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Abstract

Speech enhancement aims to extract or recover clean speech
from noisy audio signals. Many recent studies employ
diffusion-based generative models for this task. Score-Based
Generative Model for Speech Enhancement (SGMSE) uses
a U-Net-based score model to estimate parameters in the re-
verse process. This approach requires significant computa-
tional resources and large datasets for training and process-
ing. In this paper, we propose the Global Convolutional Block
Attention Module (Global CBAM), a lightweight model for
training on small datasets. Our method enhances the global
channel and spatial information of feature maps and effec-
tively boosting denoising and speech enhancement capabil-
ities. Besides, we employ a joint loss function to support
model training. Simulation results show that the proposed
method outperforms baseline models on both large and small
datasets.

1. Introduction

Speech enhancement aims to restore noisy speech signals
to clean speech. Diffusion generative models have recently
gained attention in the field of speech enhancement and have
shown good results [1, 2, 3, 4]. It is usually used with a net-
work model such as U-Net. Machine learning algorithms can
be used to extract these statistical properties by learning use-
ful representations from large datasets [1]. However, training
and processing large datasets require significant time and of-
ten result in poor performance on smaller datasets. Therefore,
it is important to find ways to efficiently train models on small
datasets and process complex noisy speech.

Recently, score-based generative models have proven ef-
fective in the field of audio enhancement. However, the per-
formance of the model is limited when working with small
training datasets due to insufficient parameter learning and a
lack of data diversity. At the same time, the model cannot
accurately identify and enhance the speech signal in the face
of complex noise conditions. The challenge is to improve the
results without consuming additional training resources.

The output of a predictive model has been proposed as the
input for a diffusion model [2, 5, 6]. The combination of
predictive and generative models uses the predictive model’s
ability to enhance speech and the generative model’s ability

to refine details, achieving efficient and accurate speech en-
hancement. During the speech generation process, the predic-
tive model simplifies the task and reduces the computational
load of the diffusion model by generating a preliminary en-
hanced speech signal that serves as input for the reverse pro-
cess. This approach not only accelerates the generation pro-
cess but also mitigates the potential artifacts introduced by the
generative model. However, it significantly increases both the
training time due to the need to train two models. Therefore,
in this paper, we try to explore structural optimizations within
the model itself to address these challenges.

Extensive research has been conducted to develop more ef-
fective methods for processing audio in complex acoustic en-
vironments. One approach [6] involves the use of predictive
networks to preprocess noisy speech. This method signifi-
cantly improves the final enhancement results and enhances
the model’s robustness by preprocessing the input signal.
However, it requires substantial training resources, involves
complex processing steps, and lacks simplicity in model de-
sign. Another approach [1] aims to improve performance by
optimizing the model structure with advanced network de-
signs. Although this simplifies computation, it often results
in overly large networks for complex audio conditions.

In this paper, we propose a Global Convolutional Block
Attention Module (Global CBAM), which is based on the
Convolutional Block Attention Module (CBAM). [7]. This
is a lightweight and efficient module that makes the model
not only computationally efficient but also more effective for
speech enhancement tasks. Besides, a joint loss function
is employed to improve the model’s performance, enabling
better handling of complex noise conditions. Here, we use
the Score-Based Generative Model for Speech Enhancement
(SGMSE) as the mathematical framework for modeling. We
then designed a Global CBAM and integrated it into the score
model. This helps the network better capture global informa-
tion from the input features. We performed comparative ex-
periments, and the results indicate that our proposed method
outperforms SGMSE on both large and small datasets.

2. Conventional diffusion model based speech enhance-
ment

We use the Score-Based Generative Model for Speech En-
hancement (SGMSE) [1] as the baseline in this article.
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To achieve the speech enhancement task, they define a
forward process and a reverse process as shown in Figure
1. Audio processing is performed in the frequency domain,
where the real and imaginary parts of the complex signal are
treated as two separate channels. In the forward process, the
clean speech signal x0 is gradually transformed into the noisy
speech signal xT . The variable t ∈ [0, T ] represents a con-
tinuous time-step that indicates the progression of the process
over its duration. By step T, clean speech has been converted
into noisy speech. In the reverse process, the noisy speech
signal xT is gradually restored to x0 using the score sθ gen-
erated by the score model. The forward process as follows is
a stochastic diffusion process {xt}Tt=0 that is modeled as the
solution to a linear Stochastic Differential Equation (SDE) of
the general form [1],

dxt = γ (y − xt) dt+ g(t)dw, (1)

where xt is the present state, and y is the speech signal with
noise, γ(y − xt) is the drift coefficient, which controls the
gradual evolution of the signal towards the target noise distri-
bution, γ is a constant that controls the rate of noise addition,
w represents the Wiener process, and g(t) is the diffusion co-
efficient, which controls the amount of Gaussian noise added
at each time t, which is defined as:

g(t) := σmin

(
σmax

σmin

)t
√
2 log

(
σmax

σmin

)
, (2)

where σmin and σmax are parameters defining the noise
schedule of the Wiener process. The reverse process of
SGMSE is realized by solving the following SDE,

dxt =
[
−γf (xt,y) + g(t)

2∇xt
pt (xt|y)

]
dt+ g(t)dw̄.

(3)
The key part of the reverse process is computing the score

∇xtpt (xt|y) generated by the score model, which is repre-
sented as sθ(xt,y, t), used to estimate the gradient of the con-
ditional distribution log pt(xt | y) with respect to xt. Here, θ
denotes the set of parameters, covering all weights and biases
in the network, used for training and optimization. The loss
function used here is the mean squared error (MSE).

The score model here is used to estimate the gradient
of the noise distribution, with its output being the score
∇xt

pt (xt|y). The main parts of the score model use the
Noise Conditional Score Network (NCSN++) [8]. This is a
Multi-Resolution U-Net Structure, consisting of upsampling
layers, downsampling layers, progressive upsampling layers,
progressive downsampling layers, and a bottleneck layer. As
shown in Figure 2, the encoder and decoder correspond to the
downsampling and upsampling layers, respectively. Except
for the bottleneck layer, each part comprises six layers. The
upsampling and downsampling layers are based on residual
network blocks derived from the BigGAN architecture [9].
Each upsampling layer includes three residual blocks, while
each downsampling layer contains two residual blocks, with

Figure 1: Flowchart of the Diffusion Model

Figure 2: Structure of the score model

the final residual block performing the upsampling or down-
sampling operation.

Since the score model is based on the U-Net architecture,
a skip connection is performed between each corresponding
downsampling and upsampling layer, where the feature val-
ues are transferred via concatenation. This design aims to pre-
serve high-resolution features and combine them with low-
resolution decoding features to recover details. Additionally,
the network incorporates a progressively growing input, as il-
lustrated by the progressive down and up layers in Figure 2.
The purpose is to provide a downsampled version of the input
to each feature map in the contracting path, which has been
successfully used to stabilize high-resolution image genera-
tion [10].

However, SGMSE performs ineffectively when dealing
with complex data with limited training datasets. Moreover,
it only considers spatial information while ignoring channel
information.

3. Proposed method

3.1 Joint loss function

To enhance the model’s performance in handling complex
noise signals, we decide to use the following equation as the
training objective,based on a combination of Mean Squared
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Figure 3: Structure of proposed Global CBAM

Error (MSE) and Mean Absolute Error (MAE), which is

argmin
θ

Et,(x0,y),z,xt|(x0,y)

[∥∥∥∥sθ(xt,y, t) +
z

σ(t)

∥∥∥∥2
2

+ α ·
∥∥∥∥sθ(xt,y, t) +

z

σ(t)

∥∥∥∥
1

]
. (4)

as shown in Equation 4, defined as MSE + αMAE, where α
is a hyperparameter. We decided to use the precision of MSE
as the foundation while introducing αMAE to better handle
complex noise signals. We did the ablation experiment and
demonstrate that this proposed method is effective.

3.2 Global Convolutional Block Attention Module

Figure 3 shows the structure of our proposed Global Con-
volutional Block Attention Module (Global CBAM). Simi-
larly to Convolutional Block Attention Module (CBAM) [7],
it consists of a channel attention module and a spatial atten-
tion module. In our score model, we added the proposed
Global CBAM at the 16×16 resolution and in the bottleneck
layer. This is to make better use of the channel attention
for feature enhancement and to improve the model’s under-
standing of global spatial information in the feature maps.
The other parts of the score model use the Noise Conditional
Score Network (NCSN++) [8].

The part of the channel attention we follow the structure of
CBAM. Then we use the global spatial attention [11] module
to replace the local spatial convolutional attention module.
This design enables our proposed method to enhance both
global spatial and channel information, providing stronger
adaptability when dealing with complex datasets.

4. Experiment

4.1 Dataset

We generated the CHiME3-WSJ0 dataset, which was pro-
duced by cleaning speech from the Wall Street Journal
(WSJ0) dataset [12] and noise signals from the CHiME3
dataset[13]. In the generated dataset, some extremely noisy
segments are included to test the robustness of the model. The

dataset contains 12777 speech files.We selected 1000 samples
from the training set as a small dataset. We consider the en-
tire dataset as the large dataset. The model was trained for
30 epochs on the entire dataset and 15 epochs on the small
dataset.

4.2 Evaluation metrics

We used Perceptual Evaluation of Speech Quality (PESQ)
[14], Extended Short-Time Objective Intelligibility (ESTOI)
[15], Signal-to-Distortion Ratio (SDR) [16], and Signal-to-
Noise Ratio Improvement (SNRi) as evaluation metrics, aim-
ing to comprehensively assess the quality of the generated
enhanced speech. Using SNRi is because the SNR improve-
ment is more pronounced, thus providing a greater reference
value. All metrics were calculated using the same methods as
those in SGMSE, ensuring the reliability of the experiments.

4.3 Hyperparameters and Training Configuration

To investigate the influence of different values of α on
the results, we conducted a set of experiments by replacing
the baseline’s original MSE loss function with our proposed
MSE + αMAE, where α ranged from 0.05 to 0.35. Com-
pared with the baseline that employs only MSE, the best per-
formance was observed when α = 0.3. Therefore, we set
α = 0.3 for all subsequent experiments.

The experiment process is illustrated in Figures 4 and Fig-
ures 5, where it can be observed that the model performance
exceeds the baseline models in all metrics in this setting.
The results of the experiment were obtained after training 15
epochs on small dataset with SI-SDR [17] and PESQ used as
evaluation metrics.

The input and output layers of the score model are Conv2D
layers with a 3× 3 kernel and a stride of 1.

4.4 Experimental results

The results are shown in Table 1 and Table 2. Here, Pro-
posed 1 refers to CBAM + joint loss, while Proposed 2 cor-
responds to Global CBAM + joint loss. The table shows that
using CBAM with joint loss significantly improves model
performance on small training datasets, and the proposed
Global CBAM with joint loss further enhances performance
on large datasets.

Figure 6 shows a comparison of spectrograms between
the results of our proposed method and SGMSE. The re-
sults were obtained using a large dataset with the proposed
Global CBAM and joint loss function. As shown in the white
squares, our method demonstrates a more effective recovery
of voice patterns, resulting in higher audio quality. The red
squares highlight noise that the baseline method failed to re-
move accurately, which is effectively eliminated by our pro-
posed method.
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Figure 4: Experiment results on SI-SDR

Figure 5: Experiment results on PESQ

5. Conclusions

In this paper, we propose a Global CBAM-based diffu-
sion generative model for the speech enhancement task. Fur-
thermore, we employ a joint loss function combining Mean
Squared Error (MSE) and Weighted Mean Absolute Error
(αMAE). This joint loss function enhances the model’s abil-
ity to handle complex noise conditions. The Global CBAM
strengthens feature representation, ensuring improved audio
quality and enhancement performance. The results demon-
strate that our model achieves performance improvements on
both large and small datasets.
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