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Abstract

This paper introduces a hybrid method to accelerate simulta-
neous source separation and dereverberation, addressing lim-
itations in existing methods. The original methods, Weighted
Prediction Error (WPE) combined with Independent Vec-
tor Analysis (IVA) using Iterative Source Steering (ISS) and
IVA with Time-decorrelation (IVA-T) using ISS, exhibit cer-
tain drawbacks: WPE-IVA-ISS suffers from slow conver-
gence due to matrix inversion in the dereverberation part,
while IVA-T-ISS achieves a completely matrix-inversion-
free algorithm but delivers lower source separation perfor-
mance than WPE-IVA-ISS. To overcome these issues, the
proposed method integrates Efficient IVA-T-ISS (EIVA-T-
ISS) and WPE-IVA-ISS for rapid convergence and enhanced
separation performance. Experimental results demonstrate
that this hybrid method achieves significantly faster conver-
gence while maintaining source separation performance com-
parable to WPE-IVA-ISS, offering a balanced and efficient
solution for blind source separation tasks.

1. Introduction

Independent Vector Analysis (IVA) [1, 2] and Weighted
Prediction Error (WPE) [3] are famous methods for blind
source separation and blind dereverberation, respectively. To
combine these processes, two main approaches have been
proposed: 1) alternately optimizing source separation and
dereverberation in different frameworks, known as WPE-IVA
[4], and 2) optimizing them in a joint framework, known as
IVA with Time-decorrelation (IVA-T) 1 [6]. Both methods
can separate individual source signals from a microphone ob-
servation without prior information.

Previous research has focused on reducing computational
complexity in updating parameters for source separation and
dereverberation. This is because both IVA-T and WPE-
IVA include matrix inversions, which increase computational

1Strictly speaking, they use Independent Low-Rank Matrix Analysis (IL-
RMA) [5] instead of IVA and propose ILRMA-T. However, we use IVA-T in
this paper to concentrate on our subjects rather than the difference between
IVA and ILRMA.

complexity as we increase the number of microphones. For
that problem, Iterative Source Steering (ISS) [7] has been
highly attracted. ISS enables updating parameters without
matrix inversions and reduces the computational complex-
ity while maintaining source separation performance in the
field of source separation. By combining this ISS, WPE-IVA-
ISS2 [8] and IVA-T-ISS [9] have been proposed, which con-
tribute to reducing their computational complexity.

Unlike the previous research, this research focuses on im-
proving the convergence speed of parameters (distinguishing
from computational complexity) and source separation per-
formance after convergence. For example, WPE-IVA-ISS [8]
still has a low convergence speed for their parameter updat-
ing since it still holds matrix inversion in the dereverbera-
tion part. On the other hand, IVA-T-ISS [9] has achieved
a completely matrix-inversion-free algorithm, so its compu-
tational complexity is low. However, the parameter con-
vergence speed is slower than before using ISS (e.g., IVA-
T) [9], and the source separation performance after conver-
gence is lower than WPE-IVA-ISS [8]. Although the slow
convergence speed has been recovered by Efficient-IVA-T-
ISS (EIVA-T-ISS) [10], which updates only the parameters
for source separation during the iterative updates, the source
separation performance after convergence is still lower than
WPE-IVA-ISS [8]. In addition to the above discussions, it is
worth comparing methods based on WPE-IVA ( [4] and [8])
and those based on IVA-T ( [6], [9], and [10]) in terms of
convergence speed and source separation performance after
convergence.

From the above background, we propose a hybrid method,
which uses EIVA-T-ISS [10] and WPE-IVA-ISS [8] in the for-
mer and the latter half of updating parameters. Since EIVA-T-
ISS and WPE-IVA-ISS have advantages in high convergence
and high separation performance after convergence respec-
tively, we hope this hybrid method can hold both advantages.
Simultaneously, we compare the proposed method with five

2Strictly speaking, they included geometric constraints (GC) and called
GC-WPE-IVA-ISS for their proposal. However, we exclude GC in this paper
to concentrate on our subjects rather than the difference between with and
without GC.
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other methods, WPE-IVA [4], IVA-T [6], WPE-IVA-ISS [8],
IVA-T-ISS [9], and EIVA-T-ISS [10], to analyze the con-
vergence speed and source separation performance compre-
hensively, and to confirm the compatibility of the proposed
method’s advantages of fast convergence speed and source
separation performance.

2. Problem Formulation

Assume that there are N sources and M(= N) micro-
phones. The source signals and observed signals can be ex-
pressed in a vector form:

sf,t = [s1,f,t, . . . , sN,f,t]
T ∈ CN , (1)

xf,t = [x1,f,t, . . . , xM,f,t]
T ∈ CM , (2)

where (·)T denotes the transpose. sn,f,t and xm,f,t denote the
short-time Fourier transformer coefficients of the nth source
and the mth microphone. f = 1, . . . , F and t = 1, . . . , T are
the numbers of frequency bins and frames, respectively. xf,t

can be expressed as

xf,t =
L∑

τ=0

Af,τsf,t−τ , (3)

where Af,τ stands for M × N mixing matrix at time lag τ
and L denotes the order of time-lagged mixing matrix.

Our goal is to obtain source estimates ŝf,t accurately with
rapid convergence.

3. Proposed method

In this section, we propose a hybrid method, which uses
EIVA-T-ISS [10] and WPE-IVA-ISS [8] in the former and the
latter processes in obtaining ŝf,t. We show an overview of
our proposed method in Fig. 1. As shown in Fig. 1a, we
use EIVA-T-ISS [10] to obtain parameters for ŝf,t. Then,
we use the parameters for initializing those used in WPE-
IVA-ISS [8]. Finally, we obtain ŝf,t by further updating the
parameters by WPE-IVA-ISS. We hope this hybrid approach
can hold both advantages of fast convergence and high sepa-
ration performance.

Hereafter, we explain the processes of our proposed
method in detail.

In EIVA-T-ISS [10], ŝf,t is obtained by the following esti-
mation model:

ŝf,t = W̃f x̃f,t, (4)

where

W̃f = [Wf ,W f ] ∈ CN×M(L+1), (5)

x̃f,t =

[
xf,t

xf,t

]
∈ CM(L+1), (6)

(a) Processing flow of hybrid method

(b) Updating flow of EIVA-T-
ISS [10]

(c) Updating flow of WPE-IVA-
ISS [8]

Figure 1: The updating and processing flows of the hybrid
method.

and xf,t = [xT
f,t−1, . . . ,x

T
f,t−L]

T ∈ CML contains the past
observed signals. In this estimation model, we update W̃f

once per several updates for Wf , as shown in Fig. 1b. We can
update Wf and W̃f by ISS [7,9,10]. Note that after updating
Wf , we need to update W f as W f ←WfU

−1
f W f , where

Uf is the separation matrix after updating W̃f . This approach
comes from our preliminary experiments that the update of
separation matrix Wf should reflect W f when only the ma-
trix Wf is updated [10]. In addition, the inversion of sepa-
ration matrix Wf can be obtained similarly by ISS. Thus, it
is unnecessary to conduct matrix inverse operation directly to
obtain U−1

f .
After convergence of W̃f using EIVA-T-ISS [10], we use

Wf for initializing that used in WPE-IVA-ISS [8]. In WPE-
IVA-ISS, ŝf,t is obtained by the following estimation model:

ŝn,f,t = wH
n,f (xf,t −ZH

n,fxf,t), (7)

where {wn,f}n,f is initialized by Wf = [w1,f , . . . ,wM,f ]
in (5) estimated by EIVA-T-ISS. (·)H denotes the conjugate
transpose. Zn,f is a dereverberation matrix for nth sepa-
rated signal ŝn,f,t. After the initialization, we repeat updating
{Zn,f}n,f once per several updates for {wn,f}n,f , as shown
in Fig. 1b. Here, {Zn,f}n,f is updated by WPE [3]:

Zn,f ←

(∑
t

xf,tx
H
f,t

rn,t

)−1(∑
t

xf,tx
H
f,t

rn,t

)
, (8)

where rn,t is variance of Time-Varying Gaussian source cal-
culated as 1

F

∑
f |ŝn,f,t|2. The update rule of {wn,f}n,f is

the same as that used for EIVA-T-ISS.
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Figure 2: Layout of sound sources and microphones

4. Experiment

4.1 Experiment conditions

The observed signals were generated by convolving speech
signals from the TIMIT database [11] with room impulse re-
sponses (RIRs) from the RWCP dataset [12]. For each mixed
signal, 2 to 4 speech segments, randomly selected from dif-
ferent speakers, were concatenated to form 10 s long clean
speech signals. The room reverberation time (T60) was set to
300 ms and 600 ms. White Gaussian noise was introduced to
adjust the signal-to-noise ratio (SNR) to 30 dB. The layout of
sources and microphones is illustrated in Fig. 2.

The directions of arrival were set at 50◦ and 70◦ for the
2-source case, 50◦, 70◦, and 110◦ for the 3-source case, and
50◦, 70◦, 110◦, and 130◦ for the 4-source case. The distance
between the uniform linear microphone array center and the
sources was 2 m.

To evaluate the separation performance, 25 Monte Carlo
simulations were conducted. All observed signals were sam-
pled at 16 kHz, and the short-time Fourier transform was per-
formed using a Hann window of 64 ms (1024 samples) with
a 16 ms (256 samples) window shift. For the dereverberation
filter, the time delay (D) and filter length (L) were set to 2
and 10, respectively. Results for all methods were obtained
over 60 iterations.

All algorithms were implemented on a workstation pow-
ered by AMD EPYC 9654. The improvement in signal-
to-distortion ratio (∆SDR) and signal-to-interference ratio
(∆SIR) [13] were used as metrics to assess separation per-
formance.

The separation performance of the proposed algorithm was
compared with the five other methods, WPE-IVA [4], IVA-T
[6], WPE-IVA-ISS [8], IVA-T-ISS [9], and EIVA-T-ISS [10].

4.2 Results

Figure 3 shows the ∆SDR and ∆SIR of different methods
with 4 channels. Figure 4 presents the average ∆SDR un-

Figure 3: The separation performance of different methods.

Table 1: Runtime [ms] per iteration (T60 = 600ms)

Method 2 ch 3 ch 4 ch
WPE-IVA [4] 117.73 208.44 300.11

WPE-IVA-ISS [8] 104.48 182.43 282.12
IVA-T [6] 297.73 659.04 940.82

IVA-T-ISS [9] 273.58 602.22 1245.10
EIVA-T-ISS [10] 37.03 82.58 156.92

HYBRID (proposed) 72.13 131.63 217.41

der different reverberant conditions. In the reverberation con-
dition with T60 = 300 ms, ∆SDR of the proposed method
has no obvious advantages over the conventional methods.
However, as the reverberation becomes stronger (with T60

= 600 ms), the separation performance of EIVA-T-ISS de-
creases significantly. The proposed hybrid method shows the
equivalent or higher ∆SDR than the conventional methods.

Figure 5 plots the convergence curves of EIVA-T-ISS,
WPE-IVA-ISS, and the hybrid method with 4 channels. The
results show the proposed method gets convergence with a
much lower time cost than WPE-IVA-ISS.

Table 1 shows the runtime of each method averaged over
iterations for separating a signal with T60 = 600 ms. We
found that WPE-IVA-ISS took longer runtime than EIVA-T-
ISS or the hybrid method, which demonstrates the superior
computational efficiency of our proposed method.
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(a) T60 = 300 ms

(b) T60 = 600 ms

Figure 4: Average ∆SDR [dB] under different reverberant
conditions.

5. Conclusion

In this paper, we proposed a hybrid method that combined
EIVA-T-ISS in the first stage and WPE-IVA-ISS in the sec-
ond stage. To evaluate its effectiveness, we compared the
proposed method against five existing methods, focusing on
convergence speed and source separation performance. Ex-
perimental results demonstrated the superior computational
efficiency. Furthermore, it achieved faster convergence than
WPE-IVA-ISS while maintaining the comparable source sep-
aration performance.
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