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Abstract—In order to improve both the separation performance
and the convergence speed, several geometrically constrained
independent vector analysis (GC-IVA) algorithms have been
developed. Those algorithms are based on the multiplicative
transfer function model, which assumes that the analysis window
length is longer than the effective part of the room impulse
responses. However, this assumption does often not hold in
reverberant environments, particularly if the reverberation is
strong, which makes the algorithms suffer from significant
performance degradation. To circumvent this issue, an algorithm
was developed, which jointly optimizes the weighted prediction
error (WPE) dereverberation method and GC-IVA (GC-WPE-
IVA). While it has demonstrated promising performance, this
joint optimization method involves matrix inversion; so it is
computationally very expensive. This work attempts to improve
the efficiency and stability of GC-WPE-IVA. We develop an
iterative source steering (ISS) updating algorithm in the frame-
work of GC-WPE-IVA. The experimental results show that the
developed method is computationally much more efficient yet it
can achieve comparable separation performance in reverberation
environments as compared to GC-WPE-IVA.

I. INTRODUCTION

Speech enhancement is vital in speech communications
systems as the source signals are always contaminated by in-
terference, reverberation, and background noise [1]–[4]. When
multiple sources are active simultaneously and no prior infor-
mation is available, blind source separation (BSS) is usually
used to separate source signals [1]. Independent component
analysis (ICA) [5], one of the most adopted BSS methods,
achieves source separation by exploiting the statistical indepen-
dence among the sources. But it suffers from the problem of
permutation. By considering the relationship among different
frequency components, independent vector analysis (IVA) [6],
[7], which is an extension of ICA, was developed to deal
with the frequency permutation problem [8]. To accelerate the
convergence and improve the robustness of IVA, the auxil-
iary function technique was developed [9] and the so-called
iteration projection (IP) [9] and iterative source steering (ISS)
[10] rules were proposed to optimize the auxiliary function.
Although IVA has attracted great attention for its performance,
the separated signals are in a random output order, which is
known as the global permutation problem. In many applica-
tions, such as speech recognition, it is of great importance to

match the separated sources and the corresponding speakers.

In real-world applications, the geometry of the array is fixed
and the locations of the sources are often known or can be
estimated [11]. To make use of such information, geometrically
constrained independent vector analysis (GC-IVA) [12]–[16]
algorithms were proposed. Recently, GC-IVA with the ISS-
based updating rules (GC-IVA-ISS) was introduced, which
demonstrated promising performance [17]; but its performance
suffers from dramatic degradation if the reverberation is strong,
which happens often in practice.

In order to mitigate the impact of reverberation on BSS,
the weighted prediction error (WPE) [18], [19], one of the
most widely used blind dereverberation methods, is usually
implemented before separation [20]. Recently, convolutional
beamformer (CBF) [21], which jointly updates the WPE
and separation filters, was developed to improve the source
extraction performance in strong reverberant environments.
The source-wise factorization of the CBF [22] was further
developed to reduce the computational complexity. ILRMA-T-
ISS [23] is another work that deals with source separation in
heavy reverberant environments with low computational cost.
To cope with the problem of global permutation, the spatial
information of the target source is used in the CBF framework
(GC-WPE-IVA) [24], resulting in better performance than the
conventional methods. Although GC-WPE-IVA is the state-of-
the-art source separation method with dereverberation, it is still
computationally costly due to the IP-based updating rules for
the separation filters.

This work attempts to improve the efficiency and stability of
the algorithm developed in [24]. We develop an ISS updating
algorithm in the framework of GC-WPE-IVA, leading to
a new algorithm called GC-WPE-IVA-ISS. Experiments are
carried out and the results show that GC-WPE-IVA-ISS is
computationally much more efficient yet it can achieve better
or at least comparable separation performance in reverberation
environments as compared to GC-WPE-IVA. Besides, since
the spatial information of the sources is used, the global
permutation problem is naturally solved with GC-WPE-IVA-
ISS.
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II. SIGNAL MODEL AND PROBLEM FORMULATION

Assume that there are N sources and M microphones. The
source signals and observed signals can be expressed in a
vector form as

sf,t = [s1,f,t s2,f,t · · · sN,f,t]
T ∈ CN×1, (1)

xf,t = [x1,f,t x2,f,t · · · xM,f,t]
T ∈ CM×1, (2)

where (·)T denotes transpose, sn,f,t and xm,f,t represent,
respectively, the nth source signal and mth microphone obser-
vation signal in the short-time Fourier transformation (STFT)
domain, f = 1 · · · F and t = 1 · · · T are frequency bin
and time frame indexes with F and T being, respectively, the
numbers of frequency bins and frames. xf,t can be expressed
as

xf,t =

LA−1∑
τ=0

Af,τsf,t−τ , (3)

where Af,τ ∈ CM×N is the convolutional mixing matrix at
time lag τ , and LA is the order of time-lagged mixing filters.
In this work, we only consider the determined case where
N = M . Based on the multi-input multi-output (MIMO) CBF
formulation [21], the beamformer’s output can be expressed as

yf,t = Wf,0xf,t +

L+D−1∑
τ=D

Wf,τxf,t−τ , (4)

where Wf,0 ∈ CN×M and Wf,τ ∈ CN×M are the coefficient
matrix of CBF, yf,t = [y1,f,t y2,f,t · · · yN,f,t]

T ∈ CN×1

consists of the N separated signals, D and L are the time delay
and the length of the CBF filters, respectively. According to
source-wise factorization of CBF [22], the nth separated signal
in yf,t can be rewritten into two following form

zn,f,t = xf,t −GH
n,fxf,t, (5)

yn,f,t = qH
n,fzn,f,t, (6)

where (·)H represents conjugate transpose, xf,t =
[xT

f,t−D xT
f,t−D−1 · · · xT

f,t−L−D+1]
T ∈ CML×1 contains

past observed signals, Gn,f ∈ CML×M is the MIMO
WPE filter, zn,f,t is the dereverberated signal of nth
source and qn,f is the demixing filter. Note that (5) and
(6) are strictly equal to (4) when qH

n,f = wn,f,0 and
−qH

n,fG
H
n,f = [wn,f,D wn,f,D+1 · · · wn,f,L+D−1], where

wn,f,τ is the nth row of Wf,τ .
To exploit the dependency between different frequency

bins and thereby avoid the frequency permutation problem
as IVA, CBF assumes that the sources follow a multivariate
Gaussian distribution with time dependent variance rn,t =∑

f |yn,f,t|2/F . Therefore, the negative log-likelihood cost
function can be derived as [22]

L =− 2
∑
f

log |detQf |+
1

T

∑
n,f,t

(
log rn,t +

|yn,f,t|2

rn,t

)
,

(7)

where Qf = [q1,f q2,f · · · qN,f ]
H is the demixing matrix.

III. PROPOSED METHOD

A. A Probabilistic model

In order to deal with the global permutation problem in
strong reverberation conditions, we introduce the geometrical
constraints [25] to the conventional CBF, which is expressed
as

LGC =
∑
n,φ,f

λn,φ|qH
n,fdφ,f − cn,φ|2, (8)

where λn,φ is a non-negative weighting coefficient, dφ,f is
the steering vector along the direction φ and cn,φ is a non-
negative-valued constraint. Note that if cn,φ = 1, optimizing
(8) gives the conventional delay-and-sum beamformer, which
is steered to φ to extract the target signal whereas setting
cn,φ to a small value will create a spatial null to suppress
interference incident from the direction φ [14]. Combining (8)
and (7) gives the cost function for the proposed method, i.e.,

L(Θ) =− 2
∑
f

log|detQf |+
1

T

∑
n,f,t

(
log rn,t +

|yn,f,t|2

rn,t

)
+

∑
n,φ,f

λn,φ|qH
n,fdφ,f − cn,φ|2,

(9)

where Θ = {ΘG,ΘQ,Θr} is the parameter set to be esti-
mated, ΘG = {Gn,f}, ΘQ = {Qf}, and Θr = {rn,t}.

B. Optimization algorithm

According to the coordinate ascent method [20], each pa-
rameter in (9) can be updated iteratively by fixing the others
until convergence.

1) Update of ΘG: To update the WPE filter Gn,f , the cost
function (9) can be rewritten by fixing other parameters and
ignoring the constant terms as

L(ΘG) =
1

T

∑
n,t,f

|qH
n,f (xf,t −GH

n,fxf,t)|2/rn,t. (10)

Note that (10) is a quadratic function with respect to ΘG.
So, the parameter that minimizes (10) is [22]

Gn,f ← R−1
n,fPn,f , (11)

where

Rn,f =
∑
t

xf,tx
H
f,t

rn,t
, (12)

Pn,f =
∑
t

xf,tx
H
f,t

rn,t
, (13)

are spatio-temporal covariance matrices.
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2) Update of ΘQ: By fixing ΘG and Θr, the cost function
(9) can be simplified to

L(ΘQ) =− 2
∑
f

log |detQf |+
∑
n,f

qH
n,fUn,fqn,f

+
∑
n,φ,f

λn,φ|qH
n,fdφ,f − cn,φ|2,

(14)

where

Un,f =
1

T

∑
t

zn,f,tz
H
n,f,t

rn,t
(15)

is the weighted covariance matrix of zn,f,t. To accelerate the
convergence of updating ΘQ, instead of using the IP-based
method that updates each row of Qf iteratively [14] (which
requires N times matrix inversion), the proposed method
adopts the ISS updating rule [10] in which the whole filter
is updated with a rank-1 matrix as

Qf ← Qf − vk,fq
H
k,f , (16)

where vk,f ∈ CN×1 is a vector to be estimated. The update
of Qf will be repeated for k = 1, ..., N . Substituting (16) into
the cost function (14) gives

LISS(vk,f)=− 2
∑
f

log |det(Qf−vk,fq
H
k,f )|

+
∑
n,f

(qn,f−v∗n,k,fqk,f)HUn,f (qn,f−v∗n,k,fqk,f)

+
∑
n,φ,f

λn,φ|(qn,f−v∗n,k,fqk,f)Hdφ,f−cn,φ|2,

(17)

where vn,k,f is the nth element of vk,f and (·)∗ denotes com-
plex conjugate. Solving the equation ∂LISS(vk,f )/∂v

∗
n,k,f =

0, which is inspired by the work in [17], we obtain the update
rules for vn,k,f , which is divided into the following two cases:

• n ̸= k: In this case, the update rule is

vn,k,f =
qH
n,fUn,fqk,f+

∑
φλn,φ(gn,φ,f−cn,φ)g∗k,φ,f

qH
k,fUn,fqk,f+

∑
φλn,φ|gk,φ,f |2

;

(18)

• n = k: In this case, vk,k,f is updated according to

vk,k,f =

1− (αk,f )
−1/2 if βk,f = 0,

1− β∗
k,f

|βk,f |+
√

|β2
k,f |+4αk,f

2αk,f |βk,f | otherwise,

(19)

where

gn,φ,f = qH
n,fdφ,f , (20)

αk,f = qH
k,fUk,fqk,f +

∑
φ

λk,φ|gk,φ,f |2, (21)

βk,f =
∑
φ

λk,φck,φgk,φ,f . (22)

Once vk,f is obtained, Qf can be updated through (16).

2 m

Source 1

50°

Source 2

70°
Source 3

110°
Source 4

130°

5.66 cm

Fig. 1. Simulation layout.

3) Update of Θr: After updating the dereverberation (Gn,f )
and separating (Qf ) filters, new separated signals yf,t can be
obtained through (5) and (6). Then, the time-varying variance
rn,t is updated as

rn,t ←
1

F

∑
f

|yn,f,t|2. (23)

IV. EXPERIMENT

A. Experimental setup

The observation signals are generated by convolving the
speech signals from the TIMIT database [26] with the room
impulse responses (RIRs) from the RWCP dataset [27]. For
every mixed signal, 4 speech segments, which are arbitrarily
selected from different speakers, are concatenated to form
10 s long clean speech signals. The room reverberation time
T60 is selected to 300 ms and 600 ms. The white Gaussian
noise is added to control the signal-to-noise ratio (SNR) to 30
dB. The layout of sources and microphones is illustrated in
Fig. 1, where a 4-element uniform linear microphone array
(ULA) with an inter-element spacing of 5.66 cm is used.
There are four sources in the sound field and the DOAs of the
four sources are 50◦, 70◦, 110◦, and 130◦, respectively. The
distance between the ULA center and the sources is 2 m. To
measure the separation performance, twenty-five Monte Carlo
simulations are carried out. All observed signals are sampled
at 16 kHz and the STFT is conducted with the Hann window
of 64 ms (1024 samples) and a window shift of 16 ms (256
samples).

We define two matrices, i.e., Λ = [λ1 λ2 · · · λN ]T

and C = [c1 c2 · · · cN ]T, with the parameters in
(8) where λn = [λn,φ1

λn,φ2
· · · λn,φN

]T ∈ RN×1,
cn = [cn,φ1

cn,φ2
· · · cn,φN

]T ∈ RN×1 and Φ =
{φ1, φ2, · · · , φN} is the set of DOAs. According to the work
in [17], we set C = E so the output order is the same as
the order of the input DOA and we use NULL constraints
Λ = Λ(J − E) where Λ is a non-negative number, J is an
all-one matrix and E is the identity matrix. We initialize Λ as
8000 and decrease it over iterations according to [13], i.e.,

Λi = Λ0α
i, (24)
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Fig. 2. Performance of the studied methods under different reverberation
conditions.

where i represents the current number of iterations, Λ0 is the
initial value of Λ and the factor α is set to 0.8. For the WPE
filter, the time delay D and filter length L are set to 2 and
10, respectively. The results for all the methods are obtained
with 50 iterations and the WPE filter is updated every 10
iterations so both the convergence speed and computational
cost are jointly considered. All the algorithms are implemented
on a workstation powered by Intel Xeon E3-1505M. The
improvement of signal-to-distortion ratio (∆SDR) and signal-
to-interference ratio (∆SIR) [28] are used as the metrics to
evaluate the separation performance.

The separation performance of the proposed algorithm (de-
noted as GC-WPE-IVA-ISS) is compared with IVA-ISS [10],
GC-IVA-ISS [17], the joint optimization algorithm of WPE
and IVA [22] with the ISS update method (WPE-IVA-ISS) and
the geometrically constrained WPE-IVA with the vectorwise
coordinate descent update method (GC-WPE-IVA-VCD) [24].

B. Experimental results

The SDR and SIR improvements of all the studied methods
under different reverberation conditions are shown in Fig. 2.
For the proposed GC-WPE-IVA-ISS, both the ground truth
DOAs ΦTrue = {50◦, 70◦, 110◦, 130◦} (denoted as true) and
the DOAs with observation error ΦTrue+ε (est.) are considered,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time cost (s)

−1

0

1

2

3

4

5

6

7

ΔS
D

R
 (d

B
)

GC-WPE-IVA-ISS
GC-WPE-IVA-VCD

Fig. 3. Convergence speed of GC-WPE-IVA-ISS and GC-WPE-IVA-VCD.

where the error ε is computer generated random number with a
uniform distribution in [−15◦, 15◦] for every source. As seen
from Fig 2, in the light reverberation condition with T60 =
300 ms, the ∆SDR of GC-IVA-ISS is close to that of the
proposed method even without dereverberation. However, as
the reverberation becomes stronger (with T60 = 600 ms), the
separation performance of GC-IVA-ISS decreases significantly.
In comparison, with the joint optimization of dereverberation
filters and separation filters and the ISS-based updating rules,
the proposed method generates a much better ∆SDR and ∆SIR
than the compared conventional methods. In the presence of
DOA errors, which is inevitable in practical applications with
multi-sources and reverberation, the separation performance of
the developed method decreases slightly. But its performance
is still better than, or at least comparable to the compared
conventional methods.

Figure 3 plots the convergence curves of GC-WPE-IVA-
ISS and GC-WPE-IVA-VCD with ground true DOA. Note that
the updating of the WPE filter is time-consuming. To better
illustrate the acceleration of the convergence speed brought by
the ISS-based optimization, the results in Fig. 3 show only
the time cost for updating the separation filters. The results
demonstrate that, due to the efficiency and stability of ISS, the
developed method gets convergence with a much lower time
cost than GC-WPE-IVA-VCD.

The accuracy of the output channel order of the proposed
GC-WPE-IVA-ISS as well as GC-IVA-ISS, GC-WPE-IVA-
VCD is listed in Table I. Note that the results of IVA-ISS
and WPE-IVA-ISS are not presented here since their output
orders are random. From Table I, it is seen that in the light
reverberation condition, all the studied methods are able to
produce accurate output order. But as the reverberation time
becomes longer, the output accuracy of the conventional meth-
ods is affected while the proposed method can still guarantee
the accuracy of the output order.

V. CONCLUSION

To make efficient use of the a priori spatial information of
the sound sources, thereby improving the source separation

4
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TABLE I
THE ACCURACY OF THE OUTPUT CHANNEL ORDER OF THE STUDIED

METHODS UNDER DIFFERENT REVERBERATION CONDITIONS.

T60 GC-IVA-ISS GC-WPE-IVA-VCD GC-WPE-IVA-ISS

300 ms 100% 100% 100%
600 ms 96% 96% 100%

performance in reverberant environments, we presented in this
work a geometrically constrained algorithm, which jointly
optimizes source separation and dereverberation filters with
the ISS-based optimization. The experimental results show that
the developed method is computationally much more efficient
yet it can achieve better or at least comparable separation
performance in reverberation environments as compared to the
studied baseline algorithms. It is also robust to DOA estimation
error. Another merit of the developed algorithm is that it is able
to deal with the global permutation problem inherently.
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