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Abstract

Semi-blind source separation-based acoustic echo cancela-
tion (SBSS-AEC) methods have gained significant attention
for their exceptional ability to effectively manage both single-
talk and double-talk situations. The convolutive transfer func-
tion (CTF) approximation with band-to-band filters is of-
ten adopted in such methods to make a trade-off between
the computational complexity and system latency. However,
CTF neglects occasions where the power of a single time-
frequency frame leaks into neighboring frequency bins, es-
pecially in highly reverberant conditions. In this paper, we
propose an extended version of the SBSS-AEC method to
enhance modeling accuracy and robustness by introducing
cross-band filters into the modeling of the source extraction
filter. To manage the increased complexity introduced by
the cross-band coefficients, we utilize the recently proposed
element-wise iterative source steering (EISS) algorithm as a
more efficient alternative to the iterative projection (IP) algo-
rithm. Simulations demonstrate the effectiveness of our pro-
posal.

1. Introduction

In modern teleconferencing systems, acoustic echo arises
due to the loudspeaker-microphone coupling and severely de-
grades the quality of communication. Consequently, numer-
ous acoustic echo cancellation (AEC) techniques have been
developed to remove the echo. A commonly adopted method
is to reformulate the AEC problem as a semi-blind source sep-
aration (SBSS) problem. Such methods, referred to as SBSS-
AEC, showcase stable performance in both double-talk and
single-talk situations, which depend on the status of far-end
and near-end speakers. SBSS is an extension of blind source
separation (BSS) [1] where partial information of the source
signals, i.e., reference signals, is known beforehand. In real-
world applications, assuming the known far-end signal as the
reference signal is typical, and implementing SBSS-AEC al-
gorithms is typical.

The latest SBSS-AEC proposals [2, 6–8] are derived in

the short-time Fourier transform (STFT) domain, among
which the convolutive transfer function (CTF) approxima-
tion is commonly utilized. The CTF introduces a convolu-
tional filter for source separation in the STFT domain. This
filter modeling alleviates the constraint between the STFT
frame length and the reverberation time, enabling CTF-based
methods to capture inter-frame information and achieve better
performance in highly reverberant environments [2]. How-
ever, the CTF model treats the mixing process as indepen-
dent across frequency bins, which is an incomplete represen-
tation as demonstrated in [3]. The power of a signal time-
frequency frame will leak into adjacent frames and neighbor-
ing frequency bins, especially when the reverberation is high.
Specifically, the convolution in a linear-time-invariant system
involves all clean subbands and their associated cross-band
filters, which capture the dependencies and interactions be-
tween different frequency subbands. Therefore, considering
cross-band filters is reasonably necessary.

In this paper, we aim to enhance the performance of the
SBSS-AEC algorithm by incorporating cross-band filters [4].
However, introducing the cross-band coefficients will signif-
icantly increase the filter length, and the inherent complexity
of the original iterative projection (IP) algorithm [5] in con-
ventional methods renders it impractical for real-world ap-
plications. To address this, we adopt our recently proposed
element-wise iterative source steering (EISS) algorithm [6,7].
The EISS algorithm is computationally much more efficient
since it avoids the matrix inverse in IP. To validate our pro-
posal, several simulations were conducted and the results
confirmed the effectiveness of the proposed approach.

2. Signal model and problem fromulation

In a double-talk communication system, the purpose of a
microphone is to capture the speaker’s voice from near-end.
A loudspeaker is used to broadcast the sound from the far end.
During the broadcast process, the far-end signal is convolved
with acoustic impulse response (AIR), which is inherent in
the room. The echo is generated in this situation. Finally, the
microphone received a mixed signal of near-end signal and
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echo signal. In the time domain at time index t, the process
can be expressed as

y(t) = v(t) + s(t),

= a(t) ⋆ x(t) + s(t),
(1)

where ⋆ denotes convolution operation, y(t), x(t), s(t), v(t)
and a(t) are microphone observation signal, far-end signal,
near-end signal, echo signal, and AIR, respectively.

The AIR is generally very long in a reverberant environ-
ment, and it is almost impossible to identify it in the time do-
main due to the heavy complexity burden. A proper alterna-
tive is to implement AEC in the STFT domain at the expense
of increasing system latency. With the exact CTF model, the
microphone signal can be approximated as

Yi,j =
P∑

p=−P

L−1∑
l=0

Ai+p,j,lXi+p,j−l + Si,j , (2)

where i and j are the frequency and time frame indexes, P
is related to the number of cross-band filters we used., L is
the length of the band-to-band filter, Ai+p,j,l represents the
filter coefficient, and Xi,j , Yi,j , Si,j denote, respectively, the
STFTs of x(t), y(t) and s(t). Note that the near-end speech
is generally close to the microphone, and we do not apply
dereverberation to it, so we use the STFT representation of
its microphone image in the above equation.

From the perspective of SBSS-AEC, the mixing process
in (2) can be rewritten as ỹi,j = Ai,j s̃i,j , where

Ai,j =

[
1 ãTi,j

0L̃×1 IL̃

]
, (3)

is the mixing matrix, in which

ãTi,j =
[
aTi−P,j aTi−P+1,j · · · aTi+P,j

]T
, (4)

aTi−p,j = [Ai−p,j,0 Ai−p,j,1 · · · Ai−p,j,L−1]
T
. (5)

The superscript T denotes the transpose operation, L̃ =
(2P + 1)L, Ai,j is the mixing matrix with the size of (L̃ +

1) × (L̃ + 1), 0L̃×1 is a column vector of length L̃ with all
elements equal to 0, and IL̃ is an identity matrix of size L̃×L̃.
The concatenated signal vectors ỹi,j and s̃i,j are defined as

ỹi,j =
[
Yi,j xT

i−P,j xT
i−P+1,j · · · xT

i+P,j

]T
, (6)

s̃i,j =
[
Si,j xT

i−P,j xT
i−P+1,j · · · xT

i+P,j

]T
, (7)

and

xi,j = [Xi,j Xi,j−1 · · · Xi,j−L+1]
T
. (8)

The target of AEC is to remove the echo signal and extract
the clean near-end signal from the microphone output signal.

The far-end signal xi,j can be regarded as the known refer-
ence signal. It is obvious that Ai,j is non-singular. We define
its inverse as the demixing matrix, i.e. Wi,j = A−1

i,j . The
close form of Wi,j is defined as

Wi,j =

[
1 −ãTi,j

0L̃×1 IL̃

]
. (9)

The first row of the demixing matrix is defined as the near-end
source extraction filter, i.e.,

wH
i,j =

[
1 − ãTi,j

]
, (10)

where (·)H denotes conjugate transpose, −ãi,j is a column
vector of length L̃. Now we have

Ŝi,j = wH
i,jỹi,j . (11)

Now, the problem is formulated as an adaptive estimate of
wi,j by adapting the independence between the near-end sig-
nal and the far-end signal, Ŝi,j is the estimated signal.

3. SBSS-AEC algorithms with crossband filtering

The near-end signal is assumed as following a generalized
Gaussian distribution [9], i.e.,

p (sj) ∝ exp

[
−
(
∥sj∥2
γ

)β
]
, (12)

where
sj =

[
S1,j S2,j . . . SI,j

]T
, (13)

where ∥ · ∥2 denotes ℓ2 norm, and γ > 0, 0 < β ≤ 2
are two shape paramters. By exploiting the mutual indepen-
dence between far-end and near-end signals, the negative log-
likelihood function can be derived as

L = − 1∑j
j′=1 α

j−j′

j∑
j′=1

αj−j′ log p(sj′)

− 2
I∑

i=1

log|detWi,j |,

(14)

where 0 < α < 1 is a forgetting factor. Utilizing the
majorization-minimization (MM) optimization method [10],
the following cost function is adopted as the optimization cri-
teria

L+ =
I∑

i=1

wH
i,jVi,jwi,j − 2

I∑
i=1

log |detWi,j | , (15)

where the auxiliary matrix Vi,j is updated recursively, i.e.,

Vi,j = αVi,j−1 + (1− α)φ(rj)ỹi,jỹ
H
i,j , (16)
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the weight is calculated from the perspective of the maximum
likelihood criterion, i.e.,

φ(rj) = |wH
i,j−1ỹi,j |β−2. (17)

As the filter is of (2P + 1)L + 1 parameters, the IP algo-
rithm [5] is impractical for the real-time system as the matrix
inverse is involved. Therefore, we adopt the EISS algorithm
to update instead of IP [6, 7]. EISS is a computationally ef-
ficient method for decreasing (15). Without calculating the
inverse of the auxiliary matrix Vi,j , it updates each element
in wi,j individually with following update rule{

w1,i,j ← w1,i,j−1 − u1,i,j , k = 1

wk,i,j ← (1− u1,i,j)wk,i,j−1 − uk,i,j , k = 2, ..., L̃

(18)
where wk,i,j is the k-th element of wi,j and uk,i,j is the steer-
ing step size. Substituting (18) into the auxiliary function
(15), we have

L+ =− 2 log |1− u1,i,j |

+ (wi,j−1 − ui,j)
H
Vi,j (wi,j−1 − ui,j) ,

(19)

In EISS, the algorithm first estimates u1,i,j and updates all
the elements in wi,j−1. Then, it estimates u2,i,j and updates
−ã1,i,j−1. In this sequence, it finally estimates uL̃+1,i,j to
updates −ãL̃,i,j−1. The process can be formulated as

ui,j =

[
u1,i,j − u1,i,j ã1,i,j−1 + u2,i,j

· · · − u1,i,j ãL̃,i,j−1 + uL̃+1,i,j

]
.

(20)

Calculating the derivative of L+ with respect to (uk,i,j)
∗

and setting the result to 0, we can obtain

uk,i,j =


1−

(
wH

i,j−1Vi,jwi,j−1

)− 1
2 , k = 1

wH
i,j−1vk,i,j

Vi,j(k, k)
, k = 2, ..., L̃

(21)
where ∗ donates the conjugate, vk,i,j is the k-th column of
Vi,j and Vi,j(k, k) represents the k-th diagonal element of
Vi,j . Applying EISS to each channel, we obtain the esti-
mated ŝi,j .

4. Experiments

In this section, we evaluated our proposed method’s sepa-
ration performance and sound quality in a double-talk envi-
ronment. We compared the performance of SBSS-AEC with
band-to-band filter and crossband filter using EISS. Regard-
ing performance metrics, true echo return loss enhancement
(tERLE) is used to measure separation performance. Besides,
we use perceptual evaluation of speech quality (PESQ) [12]
and short time objective intelligibility (STOI) [13] to measure
the quality of the sound.
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Figure 1: tERLE comparison of EISS methods with band-to-
band and crossband filters

Table 1: Performance of EISS

T60 Algorithm PESQ STOI tERLE

300 ms
Band-to-Band 1.831 0.841 7.821

Cross-Band (P = 1) 1.880 0.853 8.444
Cross-Band (P = 2) 1.882 0.855 8.559

600 ms
Band-to-Band 1.390 0.565 5.326

Cross-Band (P = 1) 1.382 0.570 5.941
Cross-Band (P = 2) 1.413 0.571 6.064

4.1 Experimental Setup

In our simulation, 30 clean reading speech signals were
randomly selected from the Deep Noise Suppression (DNS)
challenge dataset [14]. All the signals have a length of 10
seconds, and the sampling rate is 16 kHz.

To simulate a realistic acoustic environment, this study
generates room impulse response (RIR) based on the Image
Source Method (ISM) [15]. The experimental setup specifies
a room with dimensions of 8m × 8m × 3m and the rever-
beration time (T60) of 300 ms and 600 ms. The microphone
array is positioned at the center of the room at (4.0, 4.0, 1.0),
the loudspeaker is located at (1.0, 4.0, 2.5), and the near-end
speaker is positioned at (4.77, 4.64, 1.51). The generated RIR
contains 8192 samples and is normalized so that its maximum
amplitude is limited to 0.6, ensuring the signal amplitude is
suitable for subsequent simulation experiments.

For short-time analysis, the Hanning window is used and
a frame length of 1024 points is adopted with a 75% overlap
between adjacent frames. In the EISS process, the forgetting
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factor α is set to 0.992, and the shape parameter β is set to
0.4. We designed two experiments to evaluate our proposal.
In the first experiment, the CTF filter length L is set to 5, and
the number of crossband filters P is set as 2. In the second
experiment, we set the number of cross-band filters to 2 and 4
respectively while changing the T60 from 300 ms to 600 ms.
The CTF filer length L is increased to 7 when T60 is 600 ms.

4.2 Results

Figure 1 compares the tERLE of the conventional band-to-
band filter-based AEC method with the proposed crossband
filter-based EISS-AEC method under 300 ms reverberation.
The signal-to-echo ratio (SER) of the signal is 0 dB. As plot-
ted in the figure, our proposed method achieved an overall
improvement in tERLE by introducing the cross-band filter
into the separation.

In the second experiment, we test the performance of the
proposed method in different reverberation times and P . The
results are obtained as the average of three experiments, each
comprising 30 data sets. The experiment results are shown in
Table 1. The metrics comparison between the Band-to-Band
filter and Cross-Band filter demonstrates that the precise mix-
ing model of our proposal enhances the performance. How-
ever, the performance of the Cross-Band filter remains largely
consistent across different P settings, suggesting that power
leakage primarily occurs in adjacent subbands. To balance
performance and latency, setting P = 1 will be an optimal
choice according to this experiment.

5. Conclusions

In this paper, we incorporated a cross-band filter into the
EISS algorithm to better model the echo in a reverberant en-
vironment. As the extended filter is very long, we used our
previous EISS algorithm to update it. We conducted experi-
ments in an AEC environment. The results confirmed that the
cross-band filter performs better than the band-to-band filter
in the EISS algorithm.

References

[1] S. Makino, Audio source separation. Springer, 2018.

[2] G. Cheng, L. Liao, K. Chen, Y. Hu, C. Zhu, and J. Lu,
“Semi-blind source separation using convolutive trans-
fer function for nonlinear acoustic echo cancellation,” J.
Acoust. Soc. Am., vol. 153, no. 1, pp. 88–95, 2023.

[3] Y. Avargel and I. Cohen, “System identification in the
short-time Fourier transform domain with crossband fil-
tering,” IEEE Trans. ASLP, vol. 15, no. 4, pp. 1305–1319,
2007.

[4] T. Rosenbaum, I. Cohen, and E. Winebrand, “Crossband
filtering for weighted prediction error-based speech dere-
verberation,” Appl. Sci., vol. 13, no. 17, pp. 9537, 2023.

[5] N. Ono, “Stable and fast update rules for independent
vector analysis based on auxiliary function technique,”
in Proc. IEEE WASPAA, 2011, pp. 189–192.

[6] K. Lu, X. Wang, T. Ueda, S. Makino, and J. Chen,
“A computationally efficient semi-blind source separa-
tion approach for nonlinear echo cancellation based on an
element-wise iterative source steering,” in Proc. ICASSP,
2024, pp. 756–760.

[7] X. Wang, Y. Yang, A. Brendel, T. Ueda, S. Makino, J.
Benesty, et al., “On semi-blind source separation-based
approaches to nonlinear echo cancellation based on bilin-
ear alternating optimization,” IEEE Trans. ASLP 2024.

[8] L. Zhang, X. Wang, Y. Yang, T. Ueda, S. Makino, and
J. Chen, ”Heavy-tailed Distributions-Based Online Semi-
blind Source Separation for Nonlinear Echo Cancella-
tion,” in Proc. APSIPA ASC, 2024, in press.

[9] N. Ono, “Stable and fast update rules for independent
vector analysis based on auxiliary function technique,”
in Proc. WASPAA, 2011, pp. 189–192.

[10] K. Lange, MM optimization algorithms. SIAM, 2016.

[11] F. Nesta, T. S. Wada, and B.-H. Juang, “Batch-online
semi-blind source separation applied to multi-channel
acoustic echo cancellation,” IEEE Trans. ASLP, vol. 19,
no. 3, pp. 583–599, 2010.

[12] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hek-
stra, “Perceptual evaluation of speech quality (PESQ)-a
new method for speech quality assessment of telephone
networks and codecs,” in Proc. ICASSP, vol. 2, 2001, pp.
749–752.

[13] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen,
“A short-time objective intelligibility measure for time-
frequency weighted noisy speech,” in Proc. ICASSP,
2010, pp. 4214–4217.

[14] C. K. A. Reddy, V. Gopal, R. Cutler, E. Beyrami, R.
Cheng, H. Dubey, et al., “The interspeech 2020 deep
noise suppression challenge: Datasets, subjective test-
ing framework, and challenge results,” in Proc. ICASSP,
2022.

[15] J.B. Allen and D.A. Berkley, ”Image method for effi-
ciently simulating small-room acoustics,” J. Acoust. Soc.
Am., vol. 65, no. 4, pp. 943–950, 1979.

64

 

NCSP'25 
RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing 2025 
February 27 - March 2, 2025, Pulau Pinang, Malaysia 

 


	 Introduction
	 Signal model and problem fromulation
	 SBSS-AEC algorithms with crossband filtering
	 Experiments
	 Experimental Setup
	 Results

	 Conclusions



