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Abstract. We propose a method for separating N speech signals with
M sensors where N > M. Some existing methods employ binary masks
to extract the signals, and therefore, the extracted signals contain loud
musical noise. To overcome this problem, we propose using a directivity
pattern based continuous mask, which masks N — M sources in the ob-
servations, and independent component analysis (ICA) to separate the
remaining mixtures. We conducted experiments for N = 3 with M = 2
and N = 4 with M = 2, and obtained separated signals with little dis-
tortion.

1 Introduction

In this paper, we consider the blind source separation (BSS) of speech signals
observed in a real environment, i.e., the BSS of convolutive mixtures of speech.
Recently, many methods have been proposed to solve the BSS problem of convo-
lutive mixtures [1]. However, most of these methods consider the determined or
overdetermined case. In contrast, we focus on the underdetermined BSS problem
where the N source signals outnumber M sensors.

Several methods have been proposed for underdetermined BSS [2-5]. There
are two approaches, and both approaches rely on the sparseness of the source
signals. One extracts each signals with time-frequency binary masks [2], and the
other is based on ML estimation, where the sources are estimated after mixing
matrix estimation [3-5]. In [2], the authors employ a time-frequency binary mask
(BM) to extract each signal, and they have applied it to real speech mixtures.
However, the use of binary masks causes too much discontinuous zero-padding
to the extracted signals, and they contain loud musical noise.

To overcome this, we have proposed combining binary masks and ICA
(BMICA) to solve the underdetermined BSS problem [6] especially for N = 3 and
M = 2. This method consists of two stages: (1) one source removal with a binary
mask and (2) separation of the remaining mixtures with ICA (for details see Sec.
3.3). As this one source removal extracts more time-frequency points than the
BM method, it causes less zero-padding than the BM method, and therefore, we
have been able to separate signals with less musical noise. However, the BMICA
still employs a binary mask.
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Therefore we have also proposed to utilize a directivity pattern based con-
tinuous mask (DCmask) instead of a binary mask at the source removal stage
(DCmask and ICA: DCICA) [7]. The DCmask has a small gain for the DOAs of
sources to be masked, and has a large gain for other directions. Because the DC-
mask is a non-binary mask, we can avoid the zero-padding. However, in [7], as we
masked at most M — 1 sources, we applied the DCICA only for N < (M —1)+M.

In this paper, to release this limit, we propose a method for masking N — M
sources for an arbitrary number of sources N. Our proposal is to utilize the
directivity pattern of a null beamformer (NBF), which makes nulls towards given
N — M directions, formed by V' = N — M +1 virtual microphones. We conducted
experiments for N = 3 with M = 2 and N = 4 with M = 2, and the experimental
results show that our method can separate signals with little distortion.

2 Problem Description

In real environments, N source signals s; observed by M sensors are modeled
as convolutive mixtures z;(n) = S0, Sr hy(l) si(n—1+1) (G =1,---, M),
where hj; is the L-taps impulse response from a source 4 to a sensor j. Our goal
is to obtain separated signals yi(n) (k = 1,---,N) using only the information
provided by observations z;(n). Here, we consider the case of N > M.

This paper employs a time-frequency domain approach because speech sig-
nals are more sparse in the time-frequency domain than in the time-domain
[5] and convolutive mixture problems can be converted into instantaneous mix-
ture problems at each frequency. In the time-frequency domain, mixtures are
modeled as X(w,m) = H(w)S(w,m), where H(w) is an M x N mixing ma-
trix whose ji component is a transfer function from a source i to a sensor j,
S(w,m) = [S1(w,m), -, Sn(w,m)]T and X(w,m) = [X1(w,m), -+, Xar(w,m)]T de-
note short-time Fourier transformed sources and observed signals, respectively.
w is the frequency and m is the time-dependence of the short-time Fourier
transformation (STFT). We assume that sources are mutually independent and
that each source has a sparse distribution in a time-frequency domain. These
assumptions are approximately true for speech signals. Moreover, Y (w,m) =
[¥1(w,m), -+, Yn(w,m)]T denotes the STET of separated signals.

3 Conventional Methods

3.1 Classification of Time-Frequency Points with Sparseness

Several methods have been proposed [2-8] for solving the underdetermined BSS
problem, and they all utilize source sparseness. When signals are sufficiently

sparse, it can be assumed that sources do not overlap very often. Therefore,

a histogram of (%—]%’—%, L'}%%) (i # j) for example, contains N peaks.

Furthermore, we can classify the observation sample points X;(w,m) into N
classes according to the histogram, which is what the BM method does (see Sec.
3.2).
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In this paper, we utilize omnidirectional microphones, therefore we use the
phase difference p(w,m) = Z%:,_F:? (1 # ) between two observations. A his-

togram of the direction of arrival (DOA) 8(w,m) = cos‘l‘p(“:;T)C (d: the micro-

phone space, c: the speed of sound) has N peaks (Fig. 1). Each peak corresponds
to each source. Let these peaks be 1,602, -,0n where 61 < 63 < ... < 0y (Fig.
1), and the signal from 6 be S¢ (€ =1,---,N).

3.2 Conventional Method 1: With Only Binary Masks (BM)

As alluded to in Sec. 3.1, we can extract each signal using time-frequency binary
masks (e.g., [2]). We can extract each signal with a binary mask
1 Ge—A<b(w,m)<b+A )
0 otherwise
by calculating Y¢(w,m) = My (w, m)X. j(w,m) where A is an extraction range
parameter.

Although we can obtain separated signals with binary masks (1), the signals
are discontinuously zero-padded by binary masks, and therefore, we hear musical
noise in the outputs. Moreover, the performance depends on the parameter, A.

BM]  Mby(w,m) = {

3.3 Conventional Method 2: With Binary Mask and ICA (BMICA)

To overcome the musical noise problem, we have proposed using both a binary
mask and ICA (BMICA) [6]. The BMICA has two stages. At the first stage, using
the sparseness assumption, we remove the N — M sources from the observations
with a binary mask. Then in the second stage, we apply ICA to the remaining
mixtures to obtain M separated signals.

Let Os = {05(1), - -, 0s(ar) } be the set of DOAs of M signals to be separated
and O = {5,(1),~ -~,§,(N4M)} be the set of DOAs of N — M signals to be
removed (Fig. 1). To define the masks, let Zg = {s(1),---,s(M)} be the set of
indexes of ©g and Zg = {r(1),---,r(N — M)} be the set of indexes of O.

For an index set Z, we define an area A by the following procedure:

1.A—D

2. ifl1eZ, A—AU[0°4]

3.if NeZ, A+ AU[dy,180°) .

4. for every index i such that i € Z and i +1 € Z, A — AU [0;,0;41]

We define the separation area As by using Zs, and the removal area Ag by using
Zg. We also define the transition area Ar = Ag N Ag (Fig. 1).

In the first stage, unlike the BM method where each source is extracted, we
attempt to remove N — M sources from ©f using a binary mask
1 O(w,m) € As

e Mawica(w,m) = { 0  otherwise

)

by calculating X(w,zn): Meaica(w, m)X(w, m), where A=A’ U Ag, A’ =
Uicicm [6s) — 4, b5:)+A] and A is an extraction range parameter. Here,
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Fig. 1. Example histogram. (N = 4. Two male and two female combination with STFT
frame size T = 512. Tr = 0 ms). An example of the area definition is also drawn for
N=4, M=2. Here Os = {3,64} and Or = {61,602} Signals from 6; and §, are masked
in the 1st stage, and signals from 3 and 04 are separated in the 2nd stage

X(w,m) are expected to be mixtures of M signals from ©g. Therefore, in the
second stage, we apply a standard ICA to these remaining mixtures.

We expect the zero-padding of the separated signals to cause less trouble
because we extract more time-frequency points at the 1st stage than with the
BM method. However, as BMICA still employed a binary mask for the source
removal, the zero-padding to the separated signals still remained. Moreover, we
have to find a reasonable A. This is not an easy problem and we relied on manual
setting.

4 Proposed Method: Directivity Pattern Based
Continuous Mask and ICA (DCICA)

Although the basic scheme (Fig. 2) of our proposed method is the same as that
of BMICA, here we utilize non-binary masks at the 1st stage.

[1st Stage] N — M Source Removal with New DC Mask: Here, we utilize
a directivity pattern based continuous mask (DCmask) instead of a binary mask
Mgmica- When we have M microphones, we can utilize M x M ICA at the 2nd
stage if we can mask N — M signals. This can be realized by applying a mask
that has N — M nulls towards the DOAs O of the signals to be removed.

One way to obtain such a mask is to utilize the directivity pattern of a
null beamformer (NBF), which makes nulls towards given N — M directions Og,
formed by V' = N—M+1 (virtual) microphones. Here, V is not necessarily equal
to M because a mask is determined only by the number of signals to be removed
at the 1st stage: remember that we do not need information on the microphone
number M when designing the masks for BM and BMICA methods.

Here, we assume that the number of sources N is known or estimated be-
forehand, e.g., from a histogram such as that shown in Fig. 1. First we form
a (V x V) matrix Hypr(w) whose ji element Hygrji(w) = exp (jwr;s), where
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Fig. 2. Block diagram of proposed method. N =4 and M =2 case is drawn for example

Tjy = % cos b;, d; is the position of the j-th virtual microphone, c is the speed
of sound, {f; (i = 2,---,V)} = Og, and 6; = 6. ¢ Ar from which the signal’s
gain and phase are constrained at a constant value. By making a (V x V) matrix
Hyzr(w), we can remove N — M signals even if N > (the number of nulls formed
by M sensors) + (the number of outputs of a standard ICA)= (M — 1) + M.
Then one of the directivity patterns of the NBF, W(w) = Hgl.(w), is
v

F(w,0) = ZWUC(UJ) exp (jwdg cos6/c). (3)
k=1
In this paper, we use the directivity pattern of the NBF as our mask,
[DCICA 1] Moo (w,m) = F(w, (w,m)). (4)

This is our new mask, the DCmask. Figure 3 shows an example of the gain
pattern of a DCmask.
‘We can also use a modified directivity pattern, for example,

s O(w,m) € Ag
[DCICA 2] Mpey(w,m) =< F(w,8(w,m)) f(w,m) € Ar (5)
cr f(w,m) € Ar

where ¢, is a constant (e.g., ming, o |F(w, 6;)|) and ¢, is a small constant (e.g.,
the minimum value of the directivity pattern). By the mask Mpc,, the constant
gain ¢, is given to the M signals in the area Ag. Moreover, this Mpc, changes
smoothly in the transition area Ar.

The source removal is achieved by X(w,m) = Mpek(w, m)X(w,m) (k=1 or
2). It should be noted that the DCmask is applied to all channels (Fig. 2),
because ICA in the 2nd stage needs M inputs that maintain the mixing matrix
information.

Because My, and Myc, are spatially smooth in the transition area Az, it
is expected that the discontinuity of the extracted signals by these DCmasks is
less serious than that by a mask Mg, in the BMICA.

[2nd Stage] Separation of Remaining Sources by ICA: Because the re-
maining signals X are expected to be mixtures of M signals, we separate the
signals using M x M ICA. The separation process is formulated as

Y (w,m) = W(w)X(w,m), (6)
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Tr = 130 ms
where X is the masked observed signal, Y (w,m) = [Yi(w,m), -+, Yar(w,m)]7T is

the separated output signal, and W (w) represents an (M x M) separation matrix.
‘W (w) is determined so that the output signals become mutually independent.

Note that we need several masks with nulls towards different directions to
obtain all IV separated signals because our system has only M outputs.

5 Experiments

5.1 Experimental Conditions

‘We conducted anechoic tests and reverberant tests. For the anechoic tests (Tr
= 0 ms), we mixed speech signals using the mixing matrix Hj;(w) = exp (jwjs),
where 7j; = ici cosB;, d; is the position of the j-th microphone, and 6; is the
direction of the i-th source. The source directions were 45°, 90° and 135° (N=3),
and 30°, 70°, 90° and 150° (N=4). For the reverberant tests, the speech data
was convolved with impulse responses recorded in a real room (Fig. 4) whose
reverberation time was Tr = 130 ms. As the original speech, we used Japanese
sentences spoken by male and female speakers. We investigated three combina-
tions of speakers.

The STFT frame size T was 512 and the frame shift was 256 at a sampling
rate of 8 kHz. The A value for the conventional methods was 15° in DOA (N = 3)
10° in DOA (N = 4).

The adaptation rule of ICA we used was Wi41(w) = Wi(w)+n [I— (8(Y)YH)]-
W(w), where &(y) = ¢(|y|) - €740, ¢(x) = sign(z). To solve the permutation
problem of frequency domain ICA, we employed the DOA and correlation ap-
proach [9], and to solve the scaling problem of frequency domain ICA, we used
the minimum distortion principle [10].

5.2 Performance Measures

We used the signal to interference ratio (SIR) and the signal to distortion ratio
(SDR) as measures of separation performance and sound quality, respectively:
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Table 1. Results of N = 3, M = 2 simulations. (a) Tr=0ms, (b) Tr=130ms

(a) Pq| SiR1 | SIR2 [SIR3 | SDR1| SDR2| SDR3 (b) pa| SIR1 |SIR2 | SIR3 |SDR1|SDR2|SDR3
BM__118.0/ 8.9 |18.4) 7.9 115/ 83 BM__|12.3]6.3 [11.0]/50 |139] 5.8
12]12.6| 5.9 18.1] 15.2 12/9.8 |55 7.8 [15.9
BMICA 23] 6.1 | 13.0 136|174 BMICA 23 55 |9.2 14.5| 9.3
13]16.9 16.4/11.7 117 13]11.9 12,51 6.9 7.2
12]16.2| 4.9 15.2] 13.1 12]13.6 [ 4.1 7.0 [11.2
DCICA1 23] 4.6 | 16.3] 132/ 156  DCICA1 23 39 [117 14.4| 86
13182 18.7111.3 11.9 13{10.0 11.3| 56 8.0
Deicas12{12.7] 5.8 19.0/ 16.3 pCica212]10.915.1 8.3 [13.9
23 5.6 |13.0] 15.9] 18.0 23] 45 (87 16.3| 9.2
pq: ©,=(6,.6,} [dB] pa: ©,=(8,,6,} [dB]
S i, (n) T w ke, (0)

SIR; =10log w2 "royys and SDR; =10log oy =y, where
Y; is the estimation of s;, and y;s; is the output of the whole separating system
at y; when only s; is active, and zxs, = hi; * s; (* is a convolution operator).
a and D are parameters to compensate for the amplitude and phase difference
between zys, and y;s,.

The SIR and SDR values were averaged over three speaker combinations.

5.3 Experimental Results

Applicability of ICA at the 2nd Stage Before trying to separate signals
with our method, we investigated the masking performance. The percentage of
each signal power extracted by Mpc, was 51:582:53:5; = 78:20:1:1, and by Mpc,
was 50:47:2:1 (N=4 (all female), M=2, Tg= Oms, Og = {6;,6,}), for example.
Two signals are dominant and other two signals are small. Therefore, we can use
(2x2) ICA at the 2nd stage.

Separation results Table 1 (a) shows the experimental results for T = 0 ms
and N = 3, M = 2. With BM method, the SDR, values were unsatisfactory, and a
large musical noise was heard. In contrast, with our proposed method (DCICA),
we were able to obtain high SDR values without any serious deterioration in the
separation performance SIR. Although the SDR values were slightly degraded
compared with those by BMICA, we heard no musical noise with DCICA. Some
sound samples can be found at our web site [11].

In DCICA1, SIR2 was degraded. This is because the gain for 02 was less than
the gain for 6 or f5. In DCICA2, which had constant gains for 6, and 6 or 63,
the SIR2 was improved and we obtained high SDR, values.

Tables 2 shows the results for N = 4 and M = 2. We can apply our method
for N = 4.

Table 1 (b) shows the results of reverberant tests for Tg = 130 ms (N =
3, M = 2). In the reverberant case, due to the decline of sparseness, the perfor-
mance with all methods was worse than when Tg = 0 ms. However, we were
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Table 2. Results of N = 4, M = 2 simulations. Tr=0ms

pq | SIR1 | SIR2 | SIR3 | SIR4 | SDR1|SDR2| SDR3|SDR4

BM 167 96| 7.7|16.7] 4.4] 71| 7.5] 47
LS B I T I T K
DCICA1 ;z 14.1| 3.4 LT 9.2| 7.7 e
DCICA2 ;:2; S I 7 ¥ S R ) i

pg: ©,=(6,,8,} [dB]

able to obtain higher SDR values with DCICA than with the BM method even
in a reverberant environment without musical noise.

It should be noted that it remains difficult to separate signals at the center

position with any method.

6

Conclusion

We proposed utilizing a directivity pattern based continuous mask and ICA for
BSS when speech signals outnumber sensors. Our method avoids discontinuous
zero-padding, and therefore, can separate the signals with no musical noise.
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