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ABSTRACT

Subband processing is applied to blind source separa-
tion (BSS) for convolutive mixtures of speech in order
to overcome the drawback of frequency-domain BSS. In
frequency-domain BSS, we cannot use a long frame size
to cover long reverberation for several seconds of speech.
This is because we cannot correctly estimate the statis-
tics in each frequency bin if we use a long frame with
short observed speech signals. In subband based BSS,
(1) we can maintain the number of samples needed to
estimate the statistics in each subband by using a mod-
erate number of subbands, and (2) we can cover long
reverberation by using FIR filters in each subband. In
the proposed subband BSS, the permutation problem
can be solved more easily than in the frequency-domain
BSS. Moreover, we can avoid the whitening effect of sep-
arated signals which occurs in time-domain BSS.

1 INTRODUCTION

Blind source separation (BSS) is an approach that es-
timates original source signals s;(n) using only the in-
formation of the mixed signals z;(n) observed in each
input channel. This technique is applicable to the re-
alization of noise robust speech recognition and high-
quality hands-free telecommunication systems. It may
also become a clue to auditory scene analysis.

In this paper, we consider the BSS of speech signals in
a real environment, i.e., BSS of convolutive mixtures of
speech. To achieve BSS of convolutive mixtures, several
methods have been proposed [1, 2]. Some approaches
consider the impulse responses of a room h;; as FIR fil-
ters and estimate those filters in the time domain (3, 4];
other approaches transform the problem into the fre-
quency domain to solve an instantaneous BSS problem

for every frequency simultaneously [5, 6, 7].

In a real environment, an impulse response is not sta-
ble for several seconds. Therefore, we have to estimate
unmixing filters with short mixed speech signals. We
have shown, however, that the performance becomes
poor with frequency-domain BSS when we use a long
frame to estimate a long unmixing filter which can cover
realistic reverberation [8]. This is because when we use
a longer frame for a few seconds of speech mixtures,
the number of samples in each frequency bin becomes
small and, therefore, we cannot correctly estimate the
statistics in each frequency bin. On the other hand, the
performance of time-domain BSS for convolutive mix-
tures in a real environment is not good enough, either.
This is because the adaptation of an unmixing filter is
too complex to estimate a filter which is long enough
to cover the reverberation, and because there are many
local minima [9].

In this paper, we propose a method of blind source
separation using subband processing in order to over-
come these problems. Hereafter, we call this method
subband BSS. First, we divide observed signals into a
relatively small number of subbands in order to main-
tain a sufficient number of samples in each subband.
Then, in each subband, we estimate unmixing filters
which are short enough to estimate using a time-domain
BSS method.

Previous work has used subband processing for BSS to
deal with the frequency crossover between the adjacent
frequency bins in frequency-domain BSS [10]. Moreover,
subband BSS was used to reduce computational com-
plexity [11]. Our aim, on the other hand, is to maintain
the number of samples in each subband. Furthermore,
some authors [10, 12] utilized a scalar coefficient for the



unmixing system in each subband, but we use FIR fil-
ters as the unmixing system in each subband so as to
estimate a long enough unmixing filter to cover the re-
verberation.

The organization of this paper is as follows. In sec-
tion 2, the framework of BSS of convolutive mixtures
of speech is presented. In section 3, we explain the
problems of frequency-domain BSS. Then, so as to solve
these problems, we propose a blind source separation
method with subband processing (subband BSS) in sec-
tion 4. Experiments are conducted to confirm the valid-
ity of this method in section 5. In addition, we discuss
the characteristics of subband BSS in section 6. The
final section concludes this paper.

2 BLIND SOURCE SEPARATION OF CON-
VOLUTIVE MIXTURES OF SPEECH

2.1 Mixed signals model

In real environments, signals are affected by reverbera-
tion and observed by microphones. Therefore, N signals
recorded by M microphones are modeled as

N P

gj(n) =YY hji(k)sin—k+1) (j=1,---,M), (1)

i=1 k=1

where s; is the source signal from a source i, «; is the
received signal by a microphone j, and hj;; is the P-taps
impulse response from source ¢ to microphone j.

2.2 Unmixed signals model

In order to obtain unmixed signals, we estimate unmix-
ing filters w;;(k) of Q-taps, and the unmixed signals are
obtained as below:

M

Q
%) =YY wii(k)zj(n—k+1) (i=1,---,N). (2)

j=1k=1

The unmixing filters are estimated so that the unmixed
signals become mutually independent.

In this paper, we consider a two-input, two-output
convolutive BSS problem, i.e., N = M = 2 (see Fig. 1).

3 FREQUENCY-DOMAIN BSS and RE-
LATED PROBLEMS

3.1 Frequency-domain BSS

The frequency domain approach to convolutive mixtures
transforms the problem into an instantaneous BSS prob-
lem in the frequency domain [5, 6]. Using T-point short-
time Fourier transformation for (1), we obtain

X(w,m):H(w)S(w,m) (m=0a"'vLm_1)y (3)
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Figure 1: BSS system configuration.

where w denotes the frequency, m represents the time-
dependence of the short-time Fourier transformation,
L, is the number of data samples in each frequency
bin, S(w,m) = [S1(w,m), S2(w,m)]T is the source sig-
nal vector, and X (w,m) = [X;(w,m), X2(w,m)]7 is the
observed signal vector. We assume that the (2x2) mix-
ing matrix H(w) is invertible and that Hj;(w) # 0.

The unmixing process can be formulated in a fre-
quency bin w:

Y(w,m) =W (Ww)X(w,m) (m=0,---,L,—1), (4

where Y (w,m) = (Y3 (w, m), Ya(w,m)]T is the estimated
source signal vector, and W (w) represents a (2x2) un-
mixing matrix at frequency bin w. Here, we assume
that the DFT frame size T is equal to the unmixing fil-
ter length Q. W (w) is determined so that Y; (w,m) and
Y2(w,m) become mutually independent. This calcula-
tion is carried out at each frequency independently.

3.2 Problem of frequency-domain BSS

In real environments, it is quite impossible to assume
that an impulse response does not change for a period of
several seconds. We therefore have to estimate unmixing
filters with speech data of short length. Moreover, in
order to handle long reverberation, we need to estimate
a long unmixing filter w;;(k) of Q-taps using as short
learning data as we can. We have verified, however,
that the separation performance decreases when we use
a long frame for several seconds of speech signals [8]. We
show this result and describe the problems of frequency-
domain BSS in the rest of this section.

3.2.1 Ezperimental setup

Separation experiments were conducted using speech
data convolved with impulse responses recorded in a
real environment. The layout of the room we used to
measure the impulse responses is shown in Fig. 2. The
reverberation time TR was 300 ms. Since the sampling
rate was 8 kHz, 300 ms corresponds to 2400 taps. As
the original speech, we used two sentences spoken by
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Figure 2: Layout of room used in experiments.

two male and two female speakers. Investigations were
carried out for six combinations of speakers. The data
length for adaptation was three seconds or about eight
seconds, and the data length for separation was about
eight seconds.

The frequency-domain BSS algorithm was

Wiri(w)=W;(w)
+n[diag ((2(Y)Y™)) - (2(¥)YH)]W:(w), (5)

where Y=Y (w,m), superscript H denotes conjugate
transpose and (z(m)) denotes the time-average with re-
spect to time m: ﬁ 5;;;1 z(m). Subscript ¢ is used
to express the value of the i-th step in the iterations, n
is a step-size parameter, and ®(-) is a non-linear func-
tion. Here we used ®(Y) = {1 + exp(-Y™)}~! 4+ j{1 +
exp(-Y ™)}, where Y™ and Y™ are the real and the
imaginary parts of Y, respectively. We fixed the frame
shift as half of the frame size T', so as to make the num-
-ber of data samples in the time-frequency domain equal.
Note that we used the time-average of Y (w,m) of three
seconds for adaptation, i.e., we used a batch algorithm.
Note also that if we fix the data length and frame shift
as half of the frame size, the number of samples L,, of
sequences Y (w,m) in each frequency bin depends on the
frame size T': roughly speaking, L, c (data length)/T.
In order to evaluate the performance, we used the
signal to interference ratio (SIR), defined as follows:

SIR;

SIRQ; — SIRy; (6)

~ > [4ii(w)Si(w)?
SRo: = 1008 A @S @)’
” > | Hii(w) Si(w)|?
SIRy; LIRH . [Hij(w)S;(w)[?

where A(w) = W(w)H(w) and 7 # j. SIR means the
ratio of a target-originated signal to a jammer-originated
signal.
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Figure 3: Example of the relationship between the frame
size T and separation performance. Tp =300 ms.

3.2.2 Result and discussion

Figure 3 shows the relationship between the frame
length T' and separation performance. From Fig. 3,
we can see that there is a decrease in the performance
when we use a long frame size T'.

The reason for this degradation of separation perfor-
mance can be explained as follows. In the frequency-
domain BSS framework, the signal we can use is not
z(n), but X(w,m). When we fix the frame shift (for
example, at half of the frame size T) and when the
frame size T is long, the number of samples in each fre-
quency bin becomes small. This makes the estimation of
statistics, like the zero mean and independent assump-
tions, difficult. Here, when the number of samples is too
small to estimate statistics correctly, we say “the inde-
pendence assumption is not held” or “the independence
decreases/collapses.”

To investigate the independence of two signals, we
evaluated the average of the correlation coefficients
over all frequency bins:

1 T
J(T) — T Z lrwlu (7)
w=1
where
_ (U1 (w, m) — U1 (w))(Ua(w,m) — Uz(w))) (®)

 V{Uiw,m) - @12V ({Ua(w,m) - Ta@)}?)

U represents a mean value, U is the source signal S,
observed signal X, or separated signal Y and (.) denotes
the time-average.

The solid lines of Fig. 4 show the relationship between
the frame size T and J(T') for a male-male speaker pair
of three seconds. Note that the data length is fixed and
that the frame shift is also fixed at half of the frame
size; the number of data samples L,, in each frequency
is different for each frame size. The independence de-
creases as the frame length T increases. The collapse of
the independence assumption has an adverse effect on
the adaptation [13].
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Figure 4: Relationship between the frame size T and the
correlation coefficient.

In frequency-domain BSS, it is difficult to design an
unmixing filter of sufficient length to cover reverberation
with several seconds of speech.

4 SUBBAND BASED BLIND SOURCE SEP-
ARATION

In the previous section, we pointed out the problems of
frequency-domain BSS. In the frequency domain, when
we use a longer frame in order to prepare an unmixing
filter long enough to cover reverberation, it is difficult to
maintain a sufficient number of data samples to estimate
the statistics of the source signals in each frequency bin.

We showed that if we use longer learning data of
eight seconds, we can obtain better performance using
a longer frame size (dashed line in Fig. 3). However, in
practice, it is quite impossible to assume that the im-
pulse response does not change for a period of several
seconds. Accordingly, we have to estimate unmixing fil-
ters which are long enough to cover reverberation using
as short learning speech data as possible.

Based on these facts, we propose the use of subband
processing for BSS. In this method, we can choose the
number of subbands and, therefore, we can maintain a
sufficient number of samples in each subband by select-
ing a moderate number of subbands. Subband analy-
sis also allows us to estimate FIR filters as unmixing
filters in each subband. Therefore, an unmixing filter
long enough to cover reverberation should be attain-
able. Furthermore, as the unmixing filter length in each
subband is shorter than the length of the time-domain
BSS’s filter, it is easier to estimate unmixing filters than
in time-domain BSS.

4.1 Subband BSS

Figure 5 shows the configuration of subband BSS. The
system is composed of a subband analysis stage, a BSS
stage, and a subband synthesis stage.
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First, in the subband analysis stage, input signals
zj(n) are divided into N subband signals X;(k,m)
(k =0---,N — 1), where k is the subband index, m
is the time index, and N is the number of subbands.
We used polyphase filterbank [14] here. Because sig-
nals are band-limited in each subband, we can apply
decimation at the down-sampling rate of R. In the
analysis/synthesis stage, we also utilized single sideband
(SSB) modulation/demodulation [15]. We get the SSB
modulated signals X755 (k,m) in each subband.

Then, time-domain BSS is executed on X75B(k, m)
in each subband. Because SSB modulation is performed
on complex subbands to obtain real valued subbands, we
can implement the time-domain BSS algorithm without
expanding the algorithm into a complex value version.
Since we apply down-sampling, short FIR filters are
enough to separate the subband signals in each subband.
Thus SSB modulated unmixed signals ;558 (k,m) are
obtained in each subband.

Finally, unmixed signals y;(n) are obtained by syn-
thesizing each unmixed signal Y;55B(k, m).

4.1.1 Time-domain BSS

We can use any time-domain BSS algorithm for sub-
band BSS. Here, we explain the algorithm we used in
our experiment. To simplify the notation, SP5B(k, m),
X75B(k,m), and Y 55B(k,m) are written as s;(n),
Ty ('n), and y;(n), respectively.

The assumption of independence causes the correla-
tion matrix R, of the sources s (n) to become a diagonal
matrix. We assume that the source signals are non-
stationary signals, i.e., R; changes with time n. As
we are investigating the separation problem of mixed
speech, this non-stationary assumption is generally true.
Thus, if we force estimated outputs y (n) to be uncorre-
lated at every time point n, we obtain a much stronger
condition than by simple decorrelation, and thus we can
separate the sources [16].

We use the cost function @ proposed by Kawamoto
[3] as a measure of uncorrelatedness:

B
QW (2) = 5= 3 {log(det diagR5(0)) — log(detRY)]}, (9)
b=1

where R (0) = (y(n)y7 (n))s is the correlation matrix of
outputs of block B, y(n) = [y1(n),y2(n)]7 is the output
signals, < z >; is the time-average for time interval b
(b=1,---,B), and B is the number of intervals. W (2)
is the z-transform of the unmixing filter W (k) with k =
0,...,Q -1:
W) = W (k) z~*
E wu (k)z~* Z =q Lwip (k)z7* ]
Ek wa; (k) 2k Zk_o wa2 (k)z :
(10)
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where @ denotes the length of the unmixing filter and
27! is used as the unit-delay operator for convenience,
ie, z7% .z (t) = z(t — k). Therefore, the unmixing
signal y(n) = [y1(n),y2(n)]T can be expressed as

y(t) =W (2)x(t). (11)

The error function (9) is always non-negative and
takes the minimum value only when the cross-
correlation of output signals becomes zero for all time
intervals b.

By differentiating this Q with respect to W(z), con-
sidering the time-delayed components R, (k), and using
the natural gradient method, the iterative equation to
obtain the optimal unmixing filters w;; is [17]

B
Awi(k) = %Z{(diagn';(()))'l(diagR:(-k))
b=1

—(diagR3(0)) 'Ry (=k)}Wi(2),  (12)

where a is a step-size parameter.

5 Experiments

In order to confirm the superiority of our method, we
compared the separation performance of subband BSS
with that of frequency-domain BSS, using speech data
convolved with impulse responses recorded in real envi-
ronments.

5.1 Experimental Conditions

The impulse responses were recorded in real envi-
ronments specified by different reverberation times:
TR=150 ms and 300 ms. Since the original sampling
rate was 8 kHz, Tp =150 ms and 300 ms correspond to
P = 1200 taps and P = 2400 taps, respectively. The
layout of the room we used to measure the impulse re-
sponses is shown in Fig. 2. As the original speech, we
used two sentences spoken by two male and two female
speakers. We investigated three combinations of speak-
ers: male-male, male-female, and female-female. The
data length for adaptation was three seconds and for



separation it was about eight seconds. For evaluation of
the separation performance, we used the signal to inter-
ference ratio (SIR) defined in section 3.2.

5.1.1 Subband BSS

For subband analysis and synthesis, a polyphase fil-
terbank [14] with single sideband (SSB) modula-
tion/demodulation was utilized. In order to avoid the
aliasing influence, the SSB-modulated subband signals
were not critically sampled, but two-times oversam-
pled. That is, the down-sampling rate R was given
by R = %, where N is the number of subbands (0-
27). The low-pass filter (LPF) used in the analysis was
f(n) = sinc(g}—};) of length 6 x N and in the synthesis
was g(n) = sinc(ﬁ'%) of length 6 x R. Here, the number
of subbands /N = 64 and down-sampling rate R = 16.

So as to evaluate the subband analysis-synthesis sys-
tem, we measured the signal to distortion ratio (SDR)
which is defined as

¢ b*(t - D)
Y1 {b(t — D) — a(t)}?

where the system input b(t) = 6(t—Z), T is the length of
the delta function, D is the delay caused by LPF in the
analysis and synthesis stage, and a(t) is the output (im-
pulse response) of the subband analysis-synthesis sys-
tem. The SDR was 59.2 dB. This distortion caused by
subband analysis and synthesis can be ignored because
the separation performance SIR (6) is at most 15 dB
(see section 5.2).

For the time-domain BSS, we estimated the unmixing
filters w;; of 64 taps in each subband. The step-size for
adaptation a was 1.0x10™* and the block size B was

_fixed at 20 for three-second speech.

SDR = 10log [dB], (13)

5.1.2 Conventional frequency-domain BSS

The frequency-domain BSS algorithm was (5) and the
nonlinear function used here was &(:) = ta.nh(Y(R)) +
jtanh(Y'D).

We fixed the frame shift as half of the frame size T,
so as to make the number of data samples in the time-
frequency domain equal. This half shift is equivalent to
R = & insingle sideband (SSB) filterbank. The analysis
window was a Hamming window.

5.1.3 Initial value of unmizing matriz

We have shown that the solution of BSS behaves as
adaptive beamformers, which make a spatial null to-
wards a jammer direction [13]. Based on this fact, as
the initial value of the unmixing system w, we can use
constraint null beamformers [18] which can make a sharp
null towards a jammer direction and maintain the gain
and phase of a target signal. By using this initial value,
we can improve the performance of time-domain BSS
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Figure 6: Setup of a null beamformer.

[18] and we can mitigate the permutation problem which
occurs in frequency-domain BSS and in subband BSS.
First, we assume that the mixing system H = {h;;}
represents only the time difference of sound arrival 7;;
with respect to the midpoint between microphones (Fig.
6). This H is shown in the frequency domain as follows:

_ | exp(jwm1) exp (jwri2)
HIGe= exp (jwrz) exp (jwTzz) ]’ (14)

where 7j; = %i sinf;, d; is the position of j-th micro-
phone, 6; is the direction of i-th source, and c is sound
speed. Here, we gave §;==+60° as initial values.

Then we calculate the inverse of H at each frequency,
W (w) = H™'(w). For frequency-domain BSS, we used
this W (w) as the initial value of an unmixing system.
For subband BSS, we converted this W(w) = [W;;(w)]
into the time domain, w;; (k) = IFFT(W;;(w)), and then
got the initial value in each subband using subband anal-
ysis on these w;; (k).

5.1.4 Scaling the signals and solving the permutation
problem

In frequency-domain BSS/subband BSS, the scaling and
permutation problem occurs, i.e., the estimated source
signal components are recovered with a different order
and gain in the different frequency bins. To solve these
problem, we use the directivity pattern obtained by w
[19]. First, we estimate the source directions from the
directivity patterns in each frequency bin. Then, in or-
der to solve the permutation problem, we reorder the
row of W (w) so that the directivity pattern forms a null
toward the same direction in all frequency bins. So as to
scale the signals of each frequency bin, we normalize the
row of W (w) so that the gains of the target directions
become 0 dB in each frequency bin. Let W (w) be this
reordered and rescaled unmixing matrix.

For subband BSS, after we convert W (w) into the
time domain, we execute subband analysis. Then the
unmixing filters w;; are rescaled so that they have the
same power as the subband analyzed rescaled unmix-
ing filters in each subband. In subband BSS, we only
rescaled the unmixing filters because the permutation
ambiguity was not observed using our initial value of
unmixing filters.
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5.2 Experimental Results

Figure 7 shows the experimental result. N = 64 sub-
bands with decimation R = 16 corresponds to T = 32
of frequency-domain BSS as to down-sampling rate. We
used unmixing filter w of 64-taps in each subband;
this corresponds to 1024-taps in full-band. Although
in frequency-domain BSS, the performance degraded
when we used the filter of 1024-taps (i.e., frame length
T = 1024), better separation performance was achieved
in subband BSS. Moreover, the value of the averaged
correlation coefficient J(N) = & 3% |rs|, where N is
the number of subbands, was 0.028 for male-male com-
bination, 0.018 for male-female combination, and 0.020
for female-female combination. Comparing with Fig. 4,
we were able to judge that the independence assumption
was held well.

6 DISCUSSIONS

Using subband BSS, we can maintain the number of
samples in each subband and obtain better separation
performance. Using one second speech as adaptation
data, we still obtained acceptable separation perfor-
mance: SIR = 9.78 dB for Tg = 150 ms and SIR =
7.47 dB for Ty = 300 ms.

Moreover, using subband BSS, we obtained less dis-
torted separated signals than using time-domain BSS.
When we use the usual time-domain BSS algorithm, a
flattened spectrum of output signals can be observed [4].
This is because we are removing the time-dependencies
of speech signals. These whitened speech signals sound
unnatural. On the other hand, because this whiten-
ing effect is limited in each subband, subband BSS can
diminish the whitening effect. Figure 8 shows an ex-
ample of separated speech with time-domain BSS and
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subband BSS. The separated signal is whitened using
time-domain BSS, while the shape of the spectrum is
held well using subband BSS.

Furthermore, in general, the permutation problem oc-
curs in frequency-domain BSS and subband BSS; spec-
tral components of sources are recovered in a different
order at different frequencies. This makes the time do-
main reconstruction of separated signals difficult. How-
ever, this problem is less serious in subband BSS than in
frequency-domain BSS. This is because the separation
procedure is executed in each subband, each of which
have a wider bandwidth than frequency-domain BSS
and, therefore, the permutation problem does not oc-
cur in each subband. In addition, because the number
of problems is smaller in subband BSS, the permutation
problem can be solved more easily in subband BSS than
in frequency-domain BSS.

7 CONCLUSIONS

In frequency-domain BSS the problem of the collapse
of the assumption of independence occurs when a long
frame size T' is used for several seconds of speech. In
order to overcome this problem, we proposed subband
BSS: a BSS method with subband processing. Subband
BSS can (1) maintain a sufficient number of samples to
estimate statistics in each subband and (2) estimate an
unmixing filter long enough to cover the reverberation.
We confirmed in experiments that subband BSS is ef-
fective.
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